分析 求出二次函數(shù)的對稱軸,研究函數(shù)在x∈[-1,5]的單調(diào)性,解出最值,寫出值域即可.
解答 解:函數(shù)y=x2-8x的對稱軸方程是x=4,
由二次函數(shù)的性質(zhì)知:
函數(shù)在區(qū)間[-1,4]上是減函數(shù),在區(qū)間[4,5]上函數(shù)是增函數(shù)
又x=4,y=-16,
x=-1,y=9
x=5,y=-15
故函數(shù)的值域是[-16,9]
故答案為[-16,9].
點(diǎn)評 本題考查二次函數(shù)在閉區(qū)間上的最值,解答本題關(guān)鍵是根據(jù)二次函數(shù)的性質(zhì)判斷出函數(shù)在何處取到最值,二次函數(shù)在閉區(qū)間上最值在高中數(shù)學(xué)中應(yīng)用十分廣泛,一些求最值的問題最后往往歸結(jié)到二次函數(shù)的最值上來.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
t | 1 | 2 | 3 | 4 | 5 |
s | 1.5 | 5.9 | 13.4 | 24.1 | 37 |
A. | y=logax(a>1) | B. | y=ax+b(a>1) | C. | y=ax2+b(a>0) | D. | y=logax+b(a>1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com