2.已知$sinα=\frac{3}{5}$,則sin(α+π)=( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.

解答 解:$sinα=\frac{3}{5}$,則sin(α+π)═-sinα=-$\frac{3}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓C:(x-3)2+(y-4)2=4及圓內(nèi)一點(diǎn)P(2,5).
(1)求過(guò)P點(diǎn)的弦中,弦長(zhǎng)最短的弦所在的直線方程;
(2)求過(guò)點(diǎn)M(5,0)與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為6,4,則輸出a的值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,在邊長(zhǎng)為3的正方形內(nèi)有一半徑為1的圓,隨機(jī)地向正方形內(nèi)丟一粒豆子,則它落在圓內(nèi)的概率為$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.同時(shí)擲兩粒骰子(六個(gè)面分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體),則向上的點(diǎn)數(shù)之和為3的倍數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$f(x)=\left\{\begin{array}{l}{log_2}x,\;\;\;x>0\\ f(x+10),x≤0\end{array}\right.$,則f(-2016)的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn)為F1、F2,左右頂點(diǎn)為A1,A2,雙曲線C2的焦點(diǎn)為A1,A2,頂點(diǎn)為F1,F(xiàn)2,橢圓C1與雙曲線C2交于P1,P2,P3,P4四點(diǎn),若直線P2P4的斜率為$\frac{1}{2}$,則橢圓C1的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=ln\;\frac{x+1}{x-1}$.
(1)判斷函數(shù)f(x)的奇偶性,并給出證明;
(2)解不等式:f(x2+x+3)+f(-2x2+4x-7)>0;
(3)若函數(shù)g(x)=lnx-(x-1)在(1,+∞)上單調(diào)遞減,比較f(2)+f(4)+…+f(2n)與2n(n∈N*)的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=x2-8x,x∈[-1,5]的值域是[-16,9].

查看答案和解析>>

同步練習(xí)冊(cè)答案