7.已知數(shù)列{an}的前n項(xiàng)和Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),則S17+S23+S50=(  )
A.90B.10C.-10D.22

分析 Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),利用分組求和方法可得:S17=(1-3)+(5-7)+…+(29-31)+33=17,同理可得:S23,S50

解答 解:∵Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),
∴S17=(1-3)+(5-7)+…+(29-31)+33=-2×8+33=17,
S23=(1-3)+(5-7)+…+(41-43)+45=-2×11+45=23,
S50=(1-3)+(5-7)+…+(97-99)=-2×25=-50,
∴S17+S23+S50=17+23-50=-10.
故選:C.

點(diǎn)評(píng) 本題考查了數(shù)列“分組求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=3sin(x+$\frac{π}{3}$+θ)是偶函數(shù).且0<θ<π.則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sinαcosβ=$\frac{1}{4}$,則cosαsinβ的取值范圍[-$\frac{3}{4}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{x-4y+1≤0}\end{array}\right.$所表示的平面區(qū)域?yàn)镸,不等式組$\left\{\begin{array}{l}{2x-3y-3≥0}\\{2x+2y-3≤0}\end{array}\right.$所表示的平面區(qū)域?yàn)镹,若M中存在點(diǎn)在圓C:(x-3)2+(y-1)2=r2(r>0)內(nèi),但N中不存在點(diǎn)在圓C內(nèi).則r的取值范圍是( 。
A.(0,$\frac{\sqrt{13}}{2}$]B.($\frac{\sqrt{13}}{2}$,$\sqrt{17}$)C.(0,$\sqrt{17}$)D.(0,$\frac{5\sqrt{2}}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)A($\frac{7}{2}$,0)、B(0,2)、M(1-m,m+4),且四邊形MBOA有外接圓(其中O為原點(diǎn)),則M的坐標(biāo)為(2,3)或($\frac{15}{4}$,$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在等比數(shù)列{an}中,如果a1+a2=40,a3+a4=60,那么a5+a6等于(  )
A.80B.90C.95D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(diǎn)M(-1,3)且與直線l:x-y=0僅有一個(gè)交點(diǎn)的直線有(  )
A.0條B.1條C.2條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.$\sqrt{2-2cos8}$+2$\sqrt{1-sin8}$的化簡(jiǎn)結(jié)果是2cos4-4sin4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個(gè)焦點(diǎn)為F(3,0),且雙曲線的漸進(jìn)線與圓(x-3)2+y2=1相切,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}$-y2=1..

查看答案和解析>>

同步練習(xí)冊(cè)答案