考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,證明題,分類討論,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)得到g′(x),利用導(dǎo)數(shù)的幾何意義即可得出;
(Ⅱ)利用(Ⅰ)用a表示b,得到g′(x),通過(guò)對(duì)a分類討論即可得到其單調(diào)性;
(Ⅲ)由(Ⅱ)知當(dāng)a=1時(shí),函數(shù)g(x)=lnx+x
2-3x在(1,+∞)單調(diào)遞增,可得lnx+x
2-3x≥g(1)=-2,即lnx≥-x
2+3x-2=-(x-1)(x-2),令x=1+
,則ln(1+
)>
-
,利用“累加求和”及對(duì)數(shù)的運(yùn)算法則即可得出.
解答:
解:(Ⅰ)g(x)=lnx+ax
2+bx,
則g′(x)=
+2ax+b,
由函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸,得
g′(1)=1+2a+b=0,則b=-2a-1;
(Ⅱ)由(Ⅰ)得g′(x)=
,
∵函數(shù)g(x)的定義域?yàn)椋?,+∞),
∴①當(dāng)a≤0時(shí),2ax-1<0在(0,+∞)上恒成立,
由g′(x)>0得0<x<1,由g′(x)<0得x>1,
即函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
②當(dāng)a>0時(shí),令g′(x)=0得x=1或x=
,
若
<1,即a>
時(shí),由g′(x)>0得x>1或0<x<
,由g′(x)<0得
<x<1,
即函數(shù)g(x)在(0,
),(1,+∞)上單調(diào)遞增,在(
,1)單調(diào)遞減;
若
>1,即0<a<
時(shí),由g′(x)>0得x>
或0<x<1,由g′(x)<0得1<x<
,
即函數(shù)g(x)在(0,1),(
,+∞)上單調(diào)遞增,在(1,
)單調(diào)遞減;
若
=1,即a=
時(shí),在(0,+∞)上恒有g(shù)′(x)≥0,
即函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
綜上得:當(dāng)a≤0時(shí),函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
當(dāng)0<a<
時(shí),函數(shù)g(x)在(0,1)單調(diào)遞增,在(1,
)單調(diào)遞減;在(
,+∞)上單調(diào)遞增;
當(dāng)a=
時(shí),函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
當(dāng)a>
時(shí),函數(shù)g(x)在(0,
)上單調(diào)遞增,在(
,1)單調(diào)遞減;在(1,+∞)上單調(diào)遞增;
(Ⅲ)由(Ⅱ)知當(dāng)a=1時(shí),函數(shù)g(x)=lnx+x
2-3x在(1,+∞)單調(diào)遞增,
∴l(xiāng)nx+x
2-3x≥g(1)=-2,即lnx≥-x
2+3x-2=-(x-1)(x-2),
令x=1+
,則ln(1+
)>
-
,
∴l(xiāng)n(1+1)+ln(1+
)+…+ln(1+
)>1-
+
-
+…+
-
,
∴l(xiāng)n(1+n)>
+
+
+…+
.
點(diǎn)評(píng):熟練掌握導(dǎo)數(shù)的幾何意義、分類討論、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、善于利用已經(jīng)證明的結(jié)論、“累加求和”及對(duì)數(shù)的運(yùn)算法則、“分析法”、“構(gòu)造法”等是解題的關(guān)鍵.