已知
m
=(sinx,cosx),x∈[0,π],
n
=(1,-
3
).
(1)若
m
n
,求角x;
(2)若
a
=2
m
+
n
,求|
a
|的最大值及取到最大值時(shí)相應(yīng)的x.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:(1)利用向量平行的坐標(biāo)關(guān)系,得到x的三角函數(shù)值求角;
(2)利用向量的線性運(yùn)算得到向量|
a
|,化簡(jiǎn)三角函數(shù)式,求出最值.
解答: 解:(1)因?yàn)?span id="31yza4i" class="MathJye">
m
=(sinx,cosx),x∈[0,π],
n
=(1,-
3
).所以若
m
n
,那么-
3
sinx=cosx,
所以tanx=-
3
3
,x∈[0,π],所以角x=
6
;
(2)
a
=2
m
+
n
=(2sinx+1,2cosx-
3
),
所以|
a
|2=(2sinx+1)2+(2cosx-
3
2=8+4(sinx-
3
cosx
)=8+8sin(x-
π
3
),
∴當(dāng)x-
π
3
=
π
2
時(shí),|
a
|2的最大值為16,|
a
|的最大值為4,取到最大值時(shí)相應(yīng)的x為
6
點(diǎn)評(píng):本題考查了平面向量的坐標(biāo)運(yùn)算以及三角函數(shù)式的化簡(jiǎn)與最值求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x3-
9
2
x2+6x-a=0有且只有1個(gè)實(shí)數(shù)根,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=mx2+(3-m)x-4(m∈R)
(1)若f(x)的極值點(diǎn)在y軸上,求m的值;
(2)求關(guān)于x的方程f(x)=0有正根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lnx,若對(duì)所有的x∈[e,+∞)都有xf(x)≥ax-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x-y+a=0與圓(x-a)2+y2=2至多有一個(gè)公共點(diǎn),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={x|x是小于18的正質(zhì)數(shù)},A∩(∁UB)={3,5},B∩(∁UA)={7,11},(∁UA)∩(∁UB)={2,17},則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=lnx+ax2+bx,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸
(Ⅰ)確定a與b的關(guān)系
(Ⅱ)試討論函數(shù)g(x)的單調(diào)性
(Ⅲ)證明:對(duì)任意n∈N*,都有l(wèi)n(1+n)>
1
22
+
2
32
+
3
42
…+
n-1
n2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2-x)=f(x),且當(dāng)x≥1時(shí),f(x)=lg(x+
1
x

(1)求f(-1)的值;
(2)解不等式f(2-2x)<f(x+3);
(3)若關(guān)于x的方程f(x)=lg(
a
x
+2a)在(1,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=1+
3
i,z2=2
3
-2i,則
z1
z2
等于(  )
A、8
B、-4i
C、4
3
-4i
D、4
3
+4i

查看答案和解析>>

同步練習(xí)冊(cè)答案