設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且∠AOP=β,β∈(0,
π
2
),∠AOQ=α,α∈[0,π).
(1)若點(diǎn)Q的坐標(biāo)是 (m,
4
5
),其中m<0,求cos(π-α)+sin(-α)的值.
(2)設(shè)P(
3
2
,
1
2
),函數(shù)f(α)=sin(α+β),求f(α)的值域.
考點(diǎn):任意角的三角函數(shù)的定義,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:(1)利用Q(m,
4
5
)在單位圓上,其中m<0,求出m的值,利用誘導(dǎo)公式化簡(jiǎn)cos(π-α)+sin(-α),然后利用三角函數(shù)的定義求解.
(2)利用P(
3
2
1
2
),求出β的值,利用角的范圍求出相位的范圍,即可通過正弦函數(shù)的值域求解函數(shù)f(α)=sin(α+β)的值域.
解答: 解:(1)由
m2+(
4
5
)2=1
m<0
,解得m=-
3
5

∴m=cosα=-
3
5
,sinα=
4
5
.…..3分
所以cos(π-α)+sin(-α)=-cosα-sinα=-
1
5
.…..6分
(2)由已知P(
3
2
,
1
2
),∠AOP=β,β∈(0,
π
2
),可得β=
π
6
,…..8分
因?yàn)棣痢蔥0,π),則α+
π
6
∈[
π
6
,
6
)
,所以-
1
2
sin(α+
π
6
)≤1.
故f(α)的值域(-
1
2
,1]
.…..12分.
點(diǎn)評(píng):本題考查三角函數(shù)的定義,正弦函數(shù)的值域,三角函數(shù)的性質(zhì)以及誘導(dǎo)公式的應(yīng)用,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)為2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=
1
(an+1)2-1
,(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C對(duì)應(yīng)的邊為a、b、c,A=2B,cosB=
6
3
,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
(2n+1)(2n+3)
,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β(α<β)分別是二次方程ax2+bx+c=0和ax2-bx-c=0的非零根,求證:函數(shù)f(x)=
a
2
x2+bx+c總在區(qū)間(α,β)有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x-1
x+1
(其中a>0且a≠1),
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間(不必寫出證明過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(
6
5
,0),P(cosα,sinα),其中0≤α≤
π
2

(1)若cosα=
5
6
,求證:
PA
PO

(2)若
PA
PO
,求sin(2α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程是
x=2sinα
y=2+2cosα
(α是參數(shù)).現(xiàn)以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線C1的極坐標(biāo)方程;
(2)曲線C2的極坐標(biāo)方程是ρ=2,求曲線C2與曲線C1的交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
的夾角為
π
3
,|
a
|=2,|
b
|=1,則|
a
+
b
|•|
a
-
b
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案