3.在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c且a2=b2+c2+bc,a=$\sqrt{3}$,S為△ABC的面積,則S+$\sqrt{3}$cosBcosC的最大值為(  )
A.1B.$\sqrt{3}$+1C.$\sqrt{3}$D.3

分析 運用余弦定理可得A,再由正弦定理可得外接圓的半徑,再由三角形的面積公式和兩角差的余弦公式,結(jié)合余弦函數(shù)的值域,即可得到最大值.

解答 解:∵a2=b2+c2+bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
由0<A<π,可得A=$\frac{2π}{3}$,
設(shè)△ABC外接圓的半徑為R,則2R=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{sin\frac{2π}{3}}$=2,
解得R=1,
∴S+$\sqrt{3}$cosBcosC=$\frac{1}{2}$bcsinA+$\sqrt{3}$cosBcosC=$\frac{\sqrt{3}}{4}$bc+$\sqrt{3}$cosBcosC
=$\sqrt{3}$sinBsinC+$\sqrt{3}$cosBcosC=$\sqrt{3}$cos(B-C),
故S+$\sqrt{3}$cosBcosC的最大值為$\sqrt{3}$.
故選C.

點評 本題考查正弦定理和余弦定理和三角形的面積公式的運用,同時考查兩角和差的余弦公式和余弦函數(shù)的值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.兩球O1和O2在棱長為1的正方體ABCD-A1B1C1D1的內(nèi)部,且互相外切,若球O1與過點A的正方體的三個面相切,球O2與過點C1的正方體的三個面相切,則球O1和O2的表面積之和的最小值為(  )
A.3(2-$\sqrt{3}$)πB.4(2-$\sqrt{3}$)πC.3(2+$\sqrt{3}$)πD.4(2+$\sqrt{3}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)全集U=R,集合M={x|0<x≤1},N={x|x≤0},則M∩(∁UN)=(  )
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|0≤x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+2(a-2)x-4alnx(a<0),其中e為自然數(shù)的底數(shù).
(Ⅰ)討論函數(shù)y=f(x)的單調(diào)性并求極值;
(Ⅱ)若對任意的x1、x2∈(0,+∞),且x1<x2,都有f(x2)-f(x1)>2a(x2-x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可以是( 。
A.f(x)=x+sinxB.f(x)=x•sinxC.f(x)=x•cosxD.f(x)=x(x-$\frac{π}{2}$)(x-$\frac{3π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=lnx,g(x)=(2-a)(x-1)-2f(x).
(Ⅰ)當(dāng)a=1時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)F(x)=|f(x)|+$\frac{x+1}$(b>0).對任意x1,x2∈(0,2],x1≠x2,都有$\frac{F({x}_{1})-F({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點的坐標(biāo)分別為(0,1)、(0,-1),動點G滿足:直線EG與直線FG的斜率之積為$-\frac{1}{4}$.
(1)求動點G的軌跡方程;
(2)設(shè)A,B為動點G的軌跡的左右頂點,P為直線l:x=4上的一動點(點P不在x軸上),連AP交G的軌跡于C點,連PB并延長交G的軌跡于D點,試問直線CD是否過定點?若成立,請求出該定點坐標(biāo),若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O的直徑AB=2,AB上的點C平分該。
(1)證明:平面POD⊥平面PAC;
(2)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點A,B的坐標(biāo)分別為(0,-3),(0,3).直線AM,BM相交于點M,且它們的斜率之積是-3.
(1)求點M的軌跡方程;
(2)斜率為k的直線l過點E(0,1),且與點M的軌跡交于C,D兩點,kAC,kAD分別為直線AC,AD的斜率,探索對任意的實數(shù)k,kAC•kAD是否為定值,若是,則求出該值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案