分析 (1)通過an+1=$\frac{1}{2}{S}_{n}(n=1,2,3…)$與an=$\frac{1}{2}$Sn-1(n≥2)作差,整理可知數(shù)列{an}是首項(xiàng)為1、公比為$\frac{3}{2}$的等比數(shù)列,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(1)裂項(xiàng)可知$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n+lo{g}_{\frac{3}{2}}3}$-$\frac{1}{n+1+lo{g}_{\frac{3}{2}}3}$,進(jìn)而并項(xiàng)相加即得結(jié)論.
解答 解:(1)∵an+1=$\frac{1}{2}{S}_{n}(n=1,2,3…)$,an=$\frac{1}{2}$Sn-1(n≥2),
∴an+1-an=$\frac{1}{2}$an,即an+1=$\frac{3}{2}$an,
又∵a1=1,
∴數(shù)列{an}是首項(xiàng)為1、公比為$\frac{3}{2}$的等比數(shù)列,
∴數(shù)列{an}的通項(xiàng)公式an=$\frac{{3}^{n-1}}{{2}^{n-1}}$;
(2)由(1)可知bn=log$\frac{3}{2}$(3an+1)=log$\frac{3}{2}$($\frac{{3}^{n+1}}{{2}^{n}}$)=n+$lo{g}_{\frac{3}{2}}3$,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+lo{g}_{\frac{3}{2}}3)(n+1+lo{g}_{\frac{3}{2}}+3)}$=$\frac{1}{n+lo{g}_{\frac{3}{2}}3}$-$\frac{1}{n+1+lo{g}_{\frac{3}{2}}3}$,
∴Tn=$\frac{1}{1+lo{g}_{\frac{3}{2}}3}$-$\frac{1}{2+lo{g}_{\frac{3}{2}}3}$+…+$\frac{1}{n+lo{g}_{\frac{3}{2}}3}$-$\frac{1}{n+1+lo{g}_{\frac{3}{2}}3}$
=$\frac{1}{1+lo{g}_{\frac{3}{2}}3}$-$\frac{1}{n+1+lo{g}_{\frac{3}{2}}3}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(4,+∞) | B. | (-1,4) | C. | (-∞,-4)∪(1,+∞) | D. | (-4,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<2 | B. | -2<m<2 | C. | m≤2 | D. | -2≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-4x-2 | B. | y=$\frac{6}{x}+1$ | C. | y=4x2+5 | D. | y=-3x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com