15.對任意實(shí)數(shù)x,若不等式4x-m•2x+1>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m<2B.-2<m<2C.m≤2D.-2≤m≤2

分析 法一:由已知(2x2-m•2x+1>0恒成立,由此利用根的判別式能求出實(shí)數(shù)m的取值范圍.
法二:分離m,再用基本不等式求最值.

解答 解:解法一:∵對任意實(shí)數(shù)x,不等式4x-m•2x+1>0恒成立,
∴(2x2-m•2x+1>0恒成立,
∴△=m2-4<0,或m≤0,
解得m<2.
解法二:∵不等式4x-m•2x+1>0恒成立,
∴m<$\frac{{4}^{x}+1}{{2}^{x}}$=${2}^{x}+\frac{1}{{2}^{2}}$,
∵${2}^{x}+\frac{1}{{2}^{x}}≥2\sqrt{{2}^{x}•\frac{1}{{2}^{x}}}$=2,
∴m<2.
故選:A.

點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意根的判別式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式x(x+5)≤0的解集是(  )
A.[-5,0]B.(-∞,5]∪[0,+∞)C.(-∞,-5]∪[0,+∞)D.(-5,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.二次函數(shù)f(x)=ax2+(1-4a)x+1在(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)集合A={0,1,2,4,5,7},B={1,3,6,8,9},C={3,7,8},則集合(A∩B)∪C={1,3,7,8},(A∪C)∩(B∪C){1,3,7,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\frac{1}{2}{S}_{n}(n=1,2,3…)$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log$\frac{3}{2}$(3an+1)時(shí),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.x2<4是x<2的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中a1=1,an+1=2an+1(n∈N).求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=x3-x是圖象的對稱性為( 。
A.y軸B.x軸C.原點(diǎn)D.直線y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{-cos(\frac{π}{3}x),3≤x≤9}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4滿足f(xl)=f(x2)=f(x3)=f(x4)=a,則實(shí)數(shù)a的取值范圍是(0,1).

查看答案和解析>>

同步練習(xí)冊答案