1.求下列函數(shù)的積分.
(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx;                   
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx.

分析 (1)根據(jù)定積分的計(jì)算法則計(jì)算即可,
(2)根據(jù)定積分的幾何意義即可求出.

解答 解:(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx=($\frac{1}{3}$x3+$\frac{2}{3}{x}^{\frac{3}{2}}$)|${\;}_{0}^{1}$=$\frac{1}{3}$+$\frac{2}{3}$=1,
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原點(diǎn)為圓心以2為半徑的圓的面積的四分之一,
故${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π

點(diǎn)評 本題考查了定積分的計(jì)算和定積分的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=($\sqrt{2}$)-1,b=log23,c=lne,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2x+$\frac{1}{x}$-lnx.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程; 
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)z為純虛數(shù),且|z-1|=|-1+i|,則z=±i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.曲線y=xex+1在點(diǎn)(1,e+1)處的切線方程是( 。
A.2ex-y-e+1=0B.2ey-x+e+1=0C.2ex+y-e+1=0D.2ey+x-e+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列關(guān)系式正確的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow a$•$\overrightarrow b$是一個(gè)向量C.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$D.0•$\overrightarrow{AB}$=$\overrightarrow 0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(3,0)和(-3,0)B.(2,0)和(-2,0)C.(0,3)和(0,-3)D.(0,2)和(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=10,a7=14.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若cn=$\frac{1}{4}$anbn,Tn為數(shù)列{cn}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=sin2x-sinx+1的最小值是$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案