A. | -6 | B. | 10 | C. | 12 | D. | 15 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最大值.
解答 解:作出不等式組$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分)
由z=4x+y得y=-4x+z,
平移直線y=-4x+z,
由圖象可知當(dāng)直線y=-4x+z經(jīng)過點(diǎn)A時(shí),直線y=-4x+z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x=4}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$,即A(4,-1),
代入目標(biāo)函數(shù)z=4x+y得z=4×4-1=15.
即目標(biāo)函數(shù)z=4x+y的最大值為15.
故選:D.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有效 | 無效 | 合計(jì) | |
使用方案A組 | 96 | 120 | |
使用方案B組 | 72 | ||
合計(jì) | 32 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com