6.在底和高等長(zhǎng)度的銳角三角形中有一個(gè)內(nèi)接矩形,矩形的一邊在三角形的底邊上,如圖,在三角形內(nèi)取一點(diǎn),則該點(diǎn)落入矩形內(nèi)的最大概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 設(shè)矩形的長(zhǎng)為x,寬為y,由三角形相似可得y=a-x,由基本不等式可得矩形的最大面積,可得最大概率.

解答 解:設(shè)矩形的長(zhǎng)為x,寬為y,
則由三角形相似可得$\frac{x}{a}$=$\frac{a-y}{a}$,解得y=a-x,
∴矩形的面積S=xy=x(a-x)≤$(\frac{x+a-x}{2})^{2}$=$\frac{{a}^{2}}{4}$,
當(dāng)且僅當(dāng)x=a-x即x=$\frac{a}{2}$時(shí),S取最大值$\frac{{a}^{2}}{4}$,
∴點(diǎn)落入矩形內(nèi)的最大概率為$\frac{\frac{{a}^{2}}{4}}{\frac{1}{2}×a×a}$=$\frac{1}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查幾何概型,涉及基本不等式求最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,則z=4x+y的最大值為( 。
A.-6B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)f(sinα+cosα)=sinα•cosα,則f(x)的定義域?yàn)閇-$\sqrt{2}$,$\sqrt{2}$],$f(sin\frac{π}{6})$的值為-$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}滿足a1=3,且對(duì)任意的正整數(shù)m,n都有an+m=an•am,若數(shù)列{bn}滿足bn=n-1+log3an,{bn}的前n項(xiàng)和為Bn
(Ⅰ)求an和Bn;
(Ⅱ)令cn=an•bn,dn=$\frac{4n+4}{{B}_{n}•{B}_{n+2}}$,數(shù)列{cn}的前n項(xiàng)和為Sn,數(shù)列{dn}的前n項(xiàng)和為T(mén)n,分別求Sn和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,正三棱錐A-BCD的底面與正四面體E-BCD的側(cè)面BCD重合,連接AE,則異面直線AE與CD所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓在y軸上的一個(gè)頂點(diǎn),若2b,|$\overrightarrow{{F}_{1}{F}_{2}}$|,2a成等差數(shù)列,且△PF1F2的面積為12,則橢圓C的方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題?m∈[0,1],則$x+\frac{1}{x}≥{2^m}$的否定形式是( 。
A.?m∈[0,1],則$x+\frac{1}{x}<{2^m}$B.?m∈[0,1],則$x+\frac{1}{x}≥{2^m}$
C.?m∈(-∞,0)∪(1,+∞),則$x+\frac{1}{x}≥{2^m}$D.?m∈[0,1],則$x+\frac{1}{x}<{2^m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)y=f(x)的圖象是自原點(diǎn)出發(fā)的一條折線,當(dāng)n≤y≤n+1(n=0,1,2,…)時(shí),該圖象是斜率為bn的線段,其中常數(shù)b>0且b≠1,數(shù)列{xn}由f(xn)=n(n=0,1,2…)定義.
(1)若b=3,求x1,x2
(2)求xn的表達(dá)式及f(x)的解析式(不必求f(x)的定義域);
(3)當(dāng)b>1時(shí),求f(x)的定義域,并證明y=f(x)的圖象與y=x的圖象沒(méi)有橫坐標(biāo)大于1的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定義在R上的奇函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x-1)≥0的解集為[-1,0]∪[1,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案