分析 (1)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$短軸長2,離心率$\frac{{\sqrt{2}}}{2}$,列出方程組求出a,b,由此能求出橢圓的方程.
(2)由y=kx+m與x2+y2=$\frac{2}{3}$相切,得m2=$\frac{2}{3}({k}^{2}+1)$,聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+{y}^{2}=\frac{2}{3}}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,由此利用根的判別式、韋達定理、向量的數(shù)量積公式能證明以AB為直徑的圓恰過原點O.
解答 解:(1)∵橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$短軸長2,離心率$\frac{{\sqrt{2}}}{2}$,
∴$\left\{\begin{array}{l}{2b=2}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,
解得b=1,a=$\sqrt{2}$,c=1,
∴橢圓的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
證明:(2)由題意得直線的斜率存在,設(shè)直線l的方程為y=kx+m,
∵y=kx+m與x2+y2=$\frac{2}{3}$相切,
∴圓心(0,0)到直線y=kx+m的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{\frac{2}{3}}$,∴m2=$\frac{2}{3}({k}^{2}+1)$,
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+{y}^{2}=\frac{2}{3}}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,
△=8(2k2+1-m2)>0,
令P(x1,y1),Q(x2,y2),得${x}_{1}+{x}_{2}=\frac{-4km}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
y1y2=k2x1x2+km(x1+x2)+m2=$\frac{{m}^{2}-2{k}^{2}}{1+2{k}^{2}}$.
∴$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}+\frac{{m}^{2}-2{k}^{2}}{1+2{k}^{2}}$=$\frac{3{m}^{2}-2{k}^{2}-2}{1+2{k}^{2}}$=0,
∴以AB為直徑的圓恰過原點O.
點評 本題考查橢圓方程的求法,考查圓過原點的證明,是中檔題,解題時要認真審題,注意根的判別式、韋達定理、向量的數(shù)量積公式、橢圓性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線的一支 | B. | 橢圓 | C. | 拋物線 | D. | 直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(α)<g(λ)<g(β)<g(μ) | B. | g(λ)<g(α)<g(β)<g(μ) | C. | g(λ)<g(α)<g(μ)<g(β) | D. | g(α)<g(λ)<g(μ)<g(β) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com