8.復數(shù)z滿足z(1-i)=-1-i,則|z|=1.

分析 根據復數(shù)的化簡,求出復數(shù)的模即可.

解答 解:$z=\frac{-1-i}{1-i}$,
則$|z|=|{\frac{-1-i}{1-i}}|=\frac{{|{-1-i}|}}{{|{1-i}|}}=\frac{{\sqrt{2}}}{{\sqrt{2}}}=1$,
故答案為:1.

點評 本題考查了復數(shù)的運算,考查復數(shù)求模問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義在R上的奇函數(shù)f(x)滿足:當x≥0時,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)對任意實數(shù)t恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.若z=$\frac{1-\sqrt{3}i}{(\sqrt{3}+i)^{2}}$,求|z|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知Sn為等差數(shù)列{an}的前n項和,且a1=-15,S5=-55.
(1)求數(shù)列{an}的通項公式;
(2)若不等式Sn>t對于任意的n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.直線y=3x+1繞其與y軸的交點逆時針旋轉900所得到的直線方程為  x+3y-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.過點P(2,4)作圓C:(x-1)2+(y-2)2=5的切線,則切線方程為( 。
A.$\sqrt{3}$x-y=0B.2x-y=0C.x+2y-10=0D.x-2y-8=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點,點F是棱CD上的動點,試確定點F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知a為實數(shù),若函數(shù)f(x)=|x2+ax+2|-x2在區(qū)間(-∞,-1)和(2,+∞)上單調遞減,則實數(shù)a的取值范圍為[-8,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.有下列命題中,正確的是( 。
A.“若$\overrightarrow a=\overrightarrow b$,則$|\overrightarrow a|=|\overrightarrow b|$”的逆命題B.命題“?x∈R,$x+\frac{1}{x}<2$”的否定
C.“面積相等的三角形全等”的否命題D.“若A∩B=B,則A⊆B”的逆否命題

查看答案和解析>>

同步練習冊答案