10.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,則:a1+a4=(  )
A.10B.11C.12D.13

分析 由數(shù)列的前n項(xiàng)和求得首項(xiàng),再由a4=S4-S3求得a4,則答案可求.

解答 解:由Sn=n2+n+1,得a1=S1=3,
${a}_{4}={S}_{4}-{S}_{3}={4}^{2}+4+1-({3}^{2}+3+1)=8$,
∴a1+a4=11.
故選:B.

點(diǎn)評 本題考查數(shù)列遞推式,訓(xùn)練了利用數(shù)列的前n項(xiàng)和求數(shù)列中的項(xiàng),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(x2+x+1)(1-x)4展開式中x2的系數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2x+1,數(shù)列{an},{bn}分別滿足an=f(n),bn=f(bn-1).且b1=1,
(1)分別求{an},{bn}的通項(xiàng)公式;
(2)記cn=($\frac{{a}_{n}}{_{n}+1}$),求數(shù)列{cn}的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=3,當(dāng)n>1時(shí),有an+n=2an-1+2.
(1)證明:數(shù)列{an-n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足${b_n}={(-1)^n}•{a_n}$,試求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$y=2sin(2x+φ)(|φ|<\frac{π}{2})$的圖象經(jīng)過點(diǎn)(0,-1),則該函數(shù)的一個(gè)單調(diào)遞增區(qū)間為( 。
A.[-$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.i是虛數(shù)單位,計(jì)算$\frac{1-i}{2+i}$的結(jié)果為$\frac{1}{5}-\frac{3}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0),且函數(shù)f(x)的部分圖象如圖所示,則有(  )
A.f(-$\frac{3π}{4}$)<f($\frac{5π}{3}$)<f($\frac{7π}{6}$)B.f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)<f($\frac{5π}{3}$)C.f($\frac{5π}{3}$)<f($\frac{7π}{6}$)<f(-$\frac{3π}{4}$)D.f($\frac{5π}{3}$)<f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知奇函數(shù)f(x)當(dāng)x>0時(shí)的解析式為f(x)=$\frac{1}{{x}^{2}+1}$,則f(-1)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè){an}為等差數(shù)列,Sn表示它的前n項(xiàng)和,已知對任何正整數(shù)n均有Sn=$\frac{{{a}_{n}}^{2}}{6}$+$\frac{3}{2}$n,求:
(1)數(shù)列{an}首項(xiàng)a1;
(2)數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案