分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化求解即可.
解答 解:由f(-a+1)+f(4a-5)>0得f(4a-5)>-f(-a+1),
∵定義在[-1,1]上的函數(shù)y=f(x)是增函數(shù)且是奇函數(shù),
∴不等式等價為f(4a-5)>f(a-1),
則滿足$\left\{\begin{array}{l}{-1≤4a-5≤1}\\{-1≤a-1≤1}\\{4a-5>a-1}\end{array}\right.$,
得$\left\{\begin{array}{l}{1≤a≤\frac{3}{2}}\\{0≤a≤2}\\{a>\frac{4}{3}}\end{array}\right.$,即$\frac{4}{3}$<a≤$\frac{3}{2}$,
即實數(shù)a的取值范圍是$\frac{4}{3}$<a≤$\frac{3}{2}$.
點評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\sqrt{3},+∞)$ | B. | $[-1,\sqrt{3})$ | C. | $(-∞,-1]∪(\sqrt{3},+∞)$ | D. | $(-∞,-1)∪[\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=\frac{π}{8}$ | B. | $x=-\frac{π}{8}$ | C. | $x=\frac{5π}{8}$ | D. | $x=-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 8 | C. | 4$\sqrt{5}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com