20.已知直線l的傾斜角為α,且60°<α≤135°,則直線l斜率的取值范圍是(  )
A.$(\sqrt{3},+∞)$B.$[-1,\sqrt{3})$C.$(-∞,-1]∪(\sqrt{3},+∞)$D.$(-∞,-1)∪[\sqrt{3},+∞)$

分析 直接利用直線傾斜角的范圍求得其正切值的范圍得答案.

解答 解:∵60°<α≤135°,
∴tanα$>\sqrt{3}$或tanα≤-1,
又α為直線l的傾斜角,
∴k∈(-∞,-1]∪($\sqrt{3},+∞$).
故選:C.

點評 本題考查直線的傾斜角,考查了直線傾斜角和斜率的關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.5個數(shù)依次組成等比數(shù)列,且公比為-2,則其中奇數(shù)項和與偶數(shù)項和的比值為( 。
A.-$\frac{21}{20}$B.-2C.-$\frac{21}{10}$D.-$\frac{21}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex-2ax,x∈R.
(1)當a=1時,求曲線f(x)在點(0,f(0))處的切線方程;
(2)在(1)的條件下,求證:f(x)>0;
(3)當a$>\frac{1}{2}$時,求函數(shù)f(x)在[0,2a]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)f(x)=(ax+b)e-2x,曲線y=f(x)在(0,f(0))處的切線方程為x+y-1=0.
(Ⅰ)求a,b;
(Ⅱ)設(shè)g(x)=f(x)+xlnx,證明:當0<x<1時,2e-2-e-1<g(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別是$({1,0,\frac{1}{2}}),({1,1,0}),({0,\frac{1}{2},1})({1,0,1})$,畫該四面體三視圖中的正視圖時,以yOz平面為投影面,則得到的正視圖可以為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.定義在[-1,1]上的函數(shù)y=f(x)是增函數(shù)且是奇函數(shù),若f(-a+1)+f(4a-5)>0.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在正四棱錐P-ABCD中,PA=AB=2,點E在棱PC上.
(1)點E在何處時,PA∥平面EBD,并加以證明.
(2)求正四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,側(cè)棱AA1與底邊AB,AC所成的角均為60°.若頂點A1在下底面的投影恰在底邊BC上,則該三棱柱的體積為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.討論函數(shù)f(x)=$\underset{lim}{n→∞}$$\frac{x+{x}^{3}{e}^{nx}}{x+{e}^{nx}}$的連續(xù)性(n為正整數(shù)).

查看答案和解析>>

同步練習冊答案