8.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{1}{2}$.過原點(diǎn)的直線與橢圓C交于A、B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB.
(1)求橢圓C的右準(zhǔn)線方程為:x=4.求橢圓C的方程;
(2)設(shè)直線BD、AB的斜率分別為k1,k2,求$\frac{{k}_{1}}{{k}_{2}}$的值.

分析 (1)運(yùn)用橢圓的離心率公式和準(zhǔn)線方程,及a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;
(2)設(shè)A(x1,y1)(x1y1≠0),D(x2,y2),則B(-x1,-y1),運(yùn)用直線的斜率公式,由兩直線垂直的條件,可得AD的斜率,設(shè)直線AD的方程為y=kx+m(k、m≠0),代入橢圓方程,由韋達(dá)定理,結(jié)合直線的斜率公式可得BD的斜率,進(jìn)而得到所求值.

解答 解:(1)離心率為$\frac{1}{2}$,即為e=$\frac{c}{a}$=$\frac{1}{2}$,
右準(zhǔn)線方程為:x=4,即為$\frac{{a}^{2}}{c}$=4,
由b2=a2-c2,解方程可得a=2,b=$\sqrt{3}$,
則橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)設(shè)A(x1,y1)(x1y1≠0),D(x2,y2),則B(-x1,-y1),
∵kAB=$\frac{{y}_{1}}{{x}_{1}}$,AD⊥AB,∴直線AD的斜率k=-$\frac{{x}_{1}}{{y}_{1}}$,
設(shè)直線AD的方程為y=kx+m(k、m≠0),代入橢圓方程,
消去y整理得:(b2+a2k2)x2+2ma2k2x+a2m2-a2b2=0,
由韋達(dá)定理可知:x1+x2=-$\frac{2m{a}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}$,
∴y1+y2=k(x1+x2)+2m=$\frac{2m^{2}}{^{2}+{a}^{2}{k}^{2}}$,
由題可知:x1≠-x2,∴k1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=-$\frac{^{2}}{-k{a}^{2}}$=$\frac{^{2}}{{a}^{2}}$•$\frac{{y}_{1}}{{x}_{1}}$=$\frac{^{2}}{{a}^{2}}$k2,
即有$\frac{{k}_{1}}{{k}_{2}}$的值為$\frac{^{2}}{{a}^{2}}$.
由e=$\frac{c}{a}$=$\frac{1}{2}$,可得$\frac{{a}^{2}-^{2}}{{a}^{2}}$=$\frac{1}{4}$,
則$\frac{^{2}}{{a}^{2}}$=$\frac{3}{4}$,
,即$\frac{{k}_{1}}{{k}_{2}}$的值$\frac{3}{4}$.

點(diǎn)評(píng) 本題是一道直線與橢圓的綜合題,考查橢圓方程的求法,以及橢圓的性質(zhì),運(yùn)算求解能力,注意解題方法的積累,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市城區(qū)實(shí)行三級(jí)階梯水價(jià)(階梯水價(jià)就是分段累計(jì)計(jì)費(fèi)),第一階梯水價(jià)為每戶每月12噸以下(含12噸)部分,價(jià)格為1.60元/噸;第二階梯水價(jià)為每戶每月12-20 噸(含20噸)部分,價(jià)格為2.40元/噸;第三階梯水量為每戶每月20噸以上部分,價(jià)格為3.20元/噸,
(1)寫出某用戶每月用水量x噸與其水費(fèi)y元之間的函數(shù)關(guān)系式;
(2)某用戶5月份的水費(fèi)是31.2元,該用戶這個(gè)月用水多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)求值:${8^{\frac{2}{3}}}+{2^{{{log}_2}3}}+{({\frac{1}{4}})^0}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=4$,求x+x-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商品的進(jìn)價(jià)是40元/kg,現(xiàn)在的售價(jià)是60元/kg,每周可賣出300kg.根據(jù)市場(chǎng)調(diào)查,該商品每漲價(jià)1元,每周要少賣出10kg;每降價(jià)1元,每周可多賣出20kg.如果要對(duì)該商品漲價(jià),那么漲價(jià)的范圍是多少才能使每周的利潤不少于6240元?如果要對(duì)該商品降價(jià),那么降價(jià)的范圍是多少才能使每周的利潤不少于6240元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,三棱柱ABC-A′B′C′,E,F(xiàn)分別是AB,CC′的中點(diǎn),過EF作一個(gè)平面和面A′BC′相交,并找到交線,寫出作法.(注意:交線必須是由兩個(gè)確定的點(diǎn)的連線)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)滿足:對(duì)于任意x,都有f(x)=f(x-1)+f(x+1),則f(x)的一個(gè)周期為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為3$\sqrt{3}$+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若$\frac{a+sinA}{b+sinB}$=$\frac{3}{2}$,則tanB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.利用三角函數(shù)線,求滿足下列條件的α的范圍.
(1)sinα<-$\frac{1}{2}$;
(2)cosα>$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案