分析 (1)運(yùn)用橢圓的離心率公式和準(zhǔn)線方程,及a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;
(2)設(shè)A(x1,y1)(x1y1≠0),D(x2,y2),則B(-x1,-y1),運(yùn)用直線的斜率公式,由兩直線垂直的條件,可得AD的斜率,設(shè)直線AD的方程為y=kx+m(k、m≠0),代入橢圓方程,由韋達(dá)定理,結(jié)合直線的斜率公式可得BD的斜率,進(jìn)而得到所求值.
解答 解:(1)離心率為$\frac{1}{2}$,即為e=$\frac{c}{a}$=$\frac{1}{2}$,
右準(zhǔn)線方程為:x=4,即為$\frac{{a}^{2}}{c}$=4,
由b2=a2-c2,解方程可得a=2,b=$\sqrt{3}$,
則橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)設(shè)A(x1,y1)(x1y1≠0),D(x2,y2),則B(-x1,-y1),
∵kAB=$\frac{{y}_{1}}{{x}_{1}}$,AD⊥AB,∴直線AD的斜率k=-$\frac{{x}_{1}}{{y}_{1}}$,
設(shè)直線AD的方程為y=kx+m(k、m≠0),代入橢圓方程,
消去y整理得:(b2+a2k2)x2+2ma2k2x+a2m2-a2b2=0,
由韋達(dá)定理可知:x1+x2=-$\frac{2m{a}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}$,
∴y1+y2=k(x1+x2)+2m=$\frac{2m^{2}}{^{2}+{a}^{2}{k}^{2}}$,
由題可知:x1≠-x2,∴k1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=-$\frac{^{2}}{-k{a}^{2}}$=$\frac{^{2}}{{a}^{2}}$•$\frac{{y}_{1}}{{x}_{1}}$=$\frac{^{2}}{{a}^{2}}$k2,
即有$\frac{{k}_{1}}{{k}_{2}}$的值為$\frac{^{2}}{{a}^{2}}$.
由e=$\frac{c}{a}$=$\frac{1}{2}$,可得$\frac{{a}^{2}-^{2}}{{a}^{2}}$=$\frac{1}{4}$,
則$\frac{^{2}}{{a}^{2}}$=$\frac{3}{4}$,
,即$\frac{{k}_{1}}{{k}_{2}}$的值$\frac{3}{4}$.
點(diǎn)評(píng) 本題是一道直線與橢圓的綜合題,考查橢圓方程的求法,以及橢圓的性質(zhì),運(yùn)算求解能力,注意解題方法的積累,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com