19.已知雙曲線的一個焦點與拋物線y2=20x的焦點重合,其一條漸近線的斜率等于$\frac{3}{4}$,則該雙曲線的標準方程為(  )
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

分析 求出拋物線的焦點,即有c=5,求得漸近線方程即有$\frac{a}$=$\frac{3}{4}$,結(jié)合a,b,c的關(guān)系,即可解得a,b,進而得到雙曲線方程.

解答 解:拋物線y2=20x的焦點為(5,0),
即有雙曲線的焦點為(±5,0),
設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
則c=5,
由漸近線方程為y=±$\frac{a}$x.
則有$\frac{a}$=$\frac{3}{4}$,
又a2+b2=c2,
解得a=4,b=3,
則雙曲線的方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1.
故選:D.

點評 本題考查拋物線和雙曲線的方程和性質(zhì),主要考查雙曲線的漸近線方程的運用,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.在一個盒中放置6張分別標有號碼1,2,…,6的卡片,現(xiàn)從盒中隨機抽出一張,設(shè)卡片編號為a.調(diào)整盒中卡片,保留所有號碼大于a的卡片,然后第二次從盒中再次抽出一張,則第一次抽出奇數(shù)號卡片,第二次抽出偶數(shù)號卡片的概率值為$\frac{17}{45}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.8個相同的球放入標號為1,2,3的三個盒子中,每個盒子中至少有一個,共有21種不同的放法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四邊形ABCD是直角梯形,AB∥CD,AB=$\frac{1}{2}$CD,AH⊥AD,平面ABCD⊥平面PAD,且△PAD為等邊三角形,E是PA的中點,CF=$\frac{1}{4}$CD.
(I)證明:EF∥平面PBC;
(Ⅱ)若AB=$\frac{1}{2}$,AD=1,求幾何體PABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求三棱錐A-BCP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)拋物線C:y2=2px(p>0)的焦點為F,點T(t,0)(t>0),且過點F的直線,交C于A,B.
(I)當t=2時,若過T的直線交拋物線C于兩點,且兩交點的縱坐標乘積為-4,求焦點F的坐標;
(Ⅱ)如圖,直線AT、BT分別交拋物線C于點P、Q,連接PQ交x軸于點M,證明:|OF|,|OT|,|OM|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.拋物線y2=2px(p>o)的準線被圓x2+y2+2x-3=0所截得的線段長為4,則p=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)=|x+2|-|x-a|(a∈R,a>0),
(Ⅰ) 若f(x)的最小值是-3,求a的值;
(Ⅱ) 求關(guān)于x的不等式|f(x)|≤2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={2,3,4,6},B={2,4,5,7},則A∩B的子集的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案