分析 利用輔助角公式化簡函數(shù)的解析式為函數(shù)f(x)=$\sqrt{5}$sin(x+α)(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=$\frac{1}{\sqrt{5}}$),由題意可得θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,再利用誘導(dǎo)公式求得cosθ 的值.
解答 解:當(dāng)x=θ時,函數(shù)f(x)=2sinx-cosx=$\sqrt{5}$($\frac{2}{\sqrt{5}}$sinx-$\frac{1}{\sqrt{5}}$cosx)=$\sqrt{5}$sin(x+α)取得最大值,
(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=-$\frac{1}{\sqrt{5}}$),
∴θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,
∴cosθ=cos(2kπ+$\frac{π}{2}$-α)=cos($\frac{π}{2}$-α)=sinα=-$\frac{\sqrt{5}}{5}$,
故答案為:-$\frac{\sqrt{5}}{5}$.
點評 本題主要考查輔助角公式的應(yīng)用,正弦函數(shù)的最大值,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2]∪[3,+∞) | B. | [2,3] | C. | (-∞,2]∪[3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<$\frac{1}{2}$ | B. | 0<m<$\frac{1}{2}$ | C. | m>$\frac{1}{2}$ | D. | 0<m<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com