分析 (1)a1+1,a3+3,a5+5構(gòu)成等比數(shù)列,可得$({a}_{3}+3)^{2}$=(a1+1)(a5+5),即$({a}_{1}+2d+3)^{2}$=(a1+1)(a1+4d+5),解得d.
(2)an=3-(n-1)=4-n,bn=an•($\frac{1}{2}$)n=(4-n)$•(\frac{1}{2})^{n}$,利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出Sn.再利用數(shù)列的單調(diào)性即可得出.
解答 (1)解:∵a1+1,a3+3,a5+5構(gòu)成等比數(shù)列,∴$({a}_{3}+3)^{2}$=(a1+1)(a5+5),
∴$({a}_{1}+2d+3)^{2}$=(a1+1)(a1+4d+5),化為(d+1)2=0,解得d=-1.
(2)證明:an=3-(n-1)=4-n,
∴bn=an•($\frac{1}{2}$)n=(4-n)$•(\frac{1}{2})^{n}$,
∴Sn=$3×\frac{1}{2}$+2×$(\frac{1}{2})^{2}$+…+$(4-n)•(\frac{1}{2})^{n}$,
$\frac{1}{2}{S}_{n}$=$3×(\frac{1}{2})^{2}$+2×$(\frac{1}{2})^{3}$+…+(5-n)$•(\frac{1}{2})^{n}$+(4-n)•$(\frac{1}{2})^{n+1}$,
∴$\frac{1}{2}{S}_{n}$=$3×\frac{1}{2}$-$[(\frac{1}{2})^{2}+(\frac{1}{2})^{3}+…+(\frac{1}{2})^{n}]$-(4-n)•$(\frac{1}{2})^{n+1}$=$\frac{3}{2}$-$\frac{\frac{1}{4}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}$-(4-n)•$(\frac{1}{2})^{n+1}$=1+(n-2)×$(\frac{1}{2})^{n+1}$,
∴Sn=2+(n-2)×$(\frac{1}{2})^{n}$.∵Sn+1-Sn=$(2+\frac{n-1}{{2}^{n+1}})$-$(2+\frac{n-2}{{2}^{n}})$=$\frac{3-n}{{2}^{n+1}}$,
∴當1≤n≤3時,數(shù)列{Sn}是單調(diào)遞增數(shù)列,當n≥4時,數(shù)列{Sn}是單調(diào)遞減數(shù)列.
即S1<S2<S3=S4>S5>S6…,
又$\frac{3}{2}$=S1<S2=2,且n≥3,Sn>2.
∴Sn的最小值為$\frac{3}{2}$;當n=3或4時,Sn的最大值為$\frac{17}{8}$.
故:$\frac{3}{2}$≤Sn≤$\frac{17}{8}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36 | B. | 35 | C. | 34 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1} | B. | {-1,1} | C. | {1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 |
y | 2.9 | 3.3 | 3.6 | 4.4 | 5.1 |
u | 1 | 2 | 3 | 4 | 5 |
v | 25 | 20 | 21 | 15 | 13 |
A. | 變量x與y正相關(guān),u與v正相關(guān) | B. | 變量x與y負相關(guān),u與v正相關(guān) | ||
C. | 變量x與y負相關(guān),u與v負相關(guān) | D. | 變量x與y正相關(guān),u與v負相關(guān) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com