20.已知曲線C的方程是$\frac{x^2}{m}+{y^2}=1(m∈R$,且m≠0).給出下列三個(gè)命題:
①若m>0,則曲線C表示橢圓;
②若m<0,則曲線C表示雙曲線;
③若曲線C表示焦點(diǎn)在x軸上的橢圓,則m的值越大,橢圓的離心率越大.
其中,所有正確命題的序號(hào)是②③.

分析 據(jù)橢圓、雙曲線方程的特點(diǎn),列出等式求出離心率e,判斷正誤.

解答 解:①若m>0,且m≠1,則曲線C表示橢圓,不正確;
②若m<0,則曲線C表示雙曲線正確,;
③若曲線C表示焦點(diǎn)在x軸上的橢圓,則當(dāng)m>1時(shí),橢圓的離心率e=$\sqrt{\frac{m-1}{m}}$=$\sqrt{1-\frac{1}{m}}$,m的值越大,橢圓的離心率越大,正確.
故答案為:②③.

點(diǎn)評(píng) 本小題主要考查橢圓的簡(jiǎn)單性質(zhì)、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=sin$\frac{nπ}{4}$,n∈Z
(1)求證:f(1)+f(2)+…+f(8)=f(9)+f(10)+…f(16);
(2)求f(1)+f(2)+…f(2009)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.將長(zhǎng)度為1m的鐵絲分成兩段,分別圍成一個(gè)正方形和一個(gè)圓形,求使正方形和圓形的面積之和最小的正方形的邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),若在直線x=$\frac{{a}^{2}}{c}$上存在點(diǎn)P,使線段PF1的中垂線過(guò)點(diǎn)F2,則橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{3},1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow a=(-2,3,1)$,$\overrightarrow b=(1,0,-1)$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,則tanα=( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果奇函數(shù)y=f(x)(x≠0)在x∈(-∞,0)時(shí),f(x)=x+1,那么使f(x-2)<0成立的x的取值范圍是( 。
A.(-∞,1)∪(3+∞)B.(-∞,-1)∪(0,1)C.(-∞,0)∪(0,3)D.(-∞,1)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某品牌汽車4S點(diǎn),對(duì)該品牌旗下的A型、B型、C型汽車進(jìn)行維修保養(yǎng)調(diào)查,汽車4S店記錄了該品牌三種類型汽車的維修情況,整理得下表:
車型A型B型C型
頻數(shù)204040
假設(shè)該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機(jī)抽取10輛進(jìn)行問卷回訪.
(Ⅰ)求A型,B型,C型各車型汽車的數(shù)目;
(Ⅱ)從抽取的A型和B型汽車中隨機(jī)再選出2輛汽車進(jìn)行電話回訪,求這2輛汽車來(lái)自同一類型的概率;
(Ⅲ)維修結(jié)束后這100輛汽車的司機(jī)采用“100分制”“打分的方式表示4S店的滿意度,按照大于等于80優(yōu)秀,小于80合格,得到如下列聯(lián)表
優(yōu)秀合格不合格
男司機(jī)103848
女司機(jī)252752
合計(jì)3565100
問:能否在犯錯(cuò)誤概率不超過(guò)0.01前提下認(rèn)為司機(jī)對(duì)4S店滿意度調(diào)查于性別有關(guān)?請(qǐng)說(shuō)明原因.

P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.《張丘建算經(jīng)》是我國(guó)北魏時(shí)期大數(shù)學(xué)家丘建所著,約成書于公元466-485年間.其中記載著這么一道題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加的尺數(shù)(不作近似計(jì)算)為( 。
A.$\frac{16}{29}$B.$\frac{16}{27}$C.$\frac{11}{13}$D.$\frac{13}{29}$

查看答案和解析>>

同步練習(xí)冊(cè)答案