分析 設(shè)x=$\frac{{a}^{2}}{c}$與x軸的交點(diǎn)為Q,連結(jié)PF2,根據(jù)平面幾何的知識(shí)可得|PF2|=|F1F2|=2c,且|PF2|≥|QF2|,由此得到關(guān)于a、c的不等關(guān)系,化簡得到關(guān)于離心率e的一元二次不等式,求解一元二次不等式后與橢圓離心率的范圍取交集得答案.
解答 解:如圖,
設(shè)x=$\frac{{a}^{2}}{c}$與x軸的交點(diǎn)為Q,連結(jié)PF2,
∵PF1的中垂線過點(diǎn)F2,
∴|F1F2|=|PF2|,可得|PF2|=2c,
∵|QF2|=$\frac{{a}^{2}}{c}-c$,且|PF2|≥|QF2|,
∴2c≥$\frac{{a}^{2}}{c}$-c,兩邊都除以a得,
2•$\frac{c}{a}$≥$\frac{a}{c}-\frac{c}{a}$,
即2e≥$\frac{1}{e}-e$,整理得3e2≥1,
解得e≥$\frac{\sqrt{3}}{3}$,又e∈(0,1),
∴橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{3},1$).
故答案為:[$\frac{\sqrt{3}}{3},1$).
點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),考查了橢圓離心率的范圍的求法,著重考查平面幾何知識(shí)在解圓錐曲線問題中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{5}}}{5},1})$ | B. | $[{\frac{{\sqrt{2}}}{2},1})$ | C. | $({0,\frac{{\sqrt{5}}}{5}}]$ | D. | $({0,\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 1 | C. | -1 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com