5.已知函數(shù)f(x)=$\frac{lnx+1}{{e}^{x}}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),證明:對(duì)于任意x>0,f′(x)<$\frac{1+{e}^{-2}}{{x}^{2}+x}$.

分析 (1)f(x)=$\frac{lnx+1}{{e}^{x}}$,x>0.f′(x)=$\frac{1-x(lnx+1)}{x{e}^{x}}$,f′(1)=0,即可得出單調(diào)區(qū)間.
(2)要證明f′(x)=$\frac{1-x(lnx+1)}{x{e}^{x}}$<$\frac{1+{e}^{-2}}{{x}^{2}+x}$,x>0,即證明1-x(lnx+1)<$\frac{(1+{e}^{-2}){e}^{x}}{x+1}$.令g(x)=1-x(lnx+1),h(x)=$\frac{(1+{e}^{-2}){e}^{x}}{x+1}$.(x>0).令導(dǎo)數(shù)研究其單調(diào)性,分別求出函數(shù)g(x)的最大值,函數(shù)h(x)的最小值即可證明.

解答 (1)解:f(x)=$\frac{lnx+1}{{e}^{x}}$,x>0.
f′(x)=$\frac{1-x(lnx+1)}{x{e}^{x}}$,
f′(1)=0,
當(dāng)x>1時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)0<x<1時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
∴函數(shù)f(x)單調(diào)遞減區(qū)間為(1,+∞);單調(diào)遞增區(qū)間為(0,1].
(2)證明:要證明f′(x)=$\frac{1-x(lnx+1)}{x{e}^{x}}$<$\frac{1+{e}^{-2}}{{x}^{2}+x}$,x>0,即證明1-x(lnx+1)<$\frac{(1+{e}^{-2}){e}^{x}}{x+1}$.
令g(x)=1-x(lnx+1),h(x)=$\frac{(1+{e}^{-2}){e}^{x}}{x+1}$.(x>0).
g′(x)=-lnx-2,
令g′(x)=0,解得x=e-2.當(dāng)x>e-2時(shí),g′(x)<0,此時(shí)函數(shù)g(x)單調(diào)遞減;當(dāng)0<x<e-2時(shí),g′(x)>0,此時(shí)函數(shù)g(x)單調(diào)遞增.
∴當(dāng)x=e-2時(shí),函數(shù)g(x)取得最大值,g(e-2)=1+e-2
h′(x)=(1+e-2)$\frac{{e}^{x}x}{(x+1)^{2}}$>0,∴函數(shù)h(x)在x∈(0,+∞)上單調(diào)遞增.
∴h(x)>h(0)=1+e-2
∴對(duì)于任意x>0,f′(x)<$\frac{1+{e}^{-2}}{{x}^{2}+x}$.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列,數(shù)列{bn}是首項(xiàng)為1,公比為q(q>1)的等比數(shù)列,且a2=b2,a3+b3=7.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=an+bn,Tn為數(shù)列{cn}前n項(xiàng)和,求Tn;
(3)若不等式(-1)nx<(-1)n+1an+bn對(duì)于任意的n∈N+都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知公比q≠1的正項(xiàng)等比數(shù)列{an},a3=1,函數(shù)f(x)=1+lnx,則f(a1)+f(a2)+…+f(a5)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)y=cosx的圖象上的每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍、縱坐標(biāo)不變,再將所得圖象向右平移$\frac{π}{3}$個(gè)單位,則最后得到的圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.$y=cos(2x-\frac{π}{3})$B.$y=cos(2x-\frac{2π}{3})$C.$y=cos(\frac{x}{2}-\frac{π}{3})$D.$y=cos(\frac{x}{2}-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow a,\overrightarrow b$是(空間)非零向量,構(gòu)造向量集合$P=\left\{{\left.{\overrightarrow p}\right|\overrightarrow p=t\overrightarrow a+\overrightarrow b,t∈{R}}\right\}$,記集合P中模最小的向量$\overrightarrow p$為$T(\overrightarrow a,\overrightarrow b)$.
(Ⅰ)對(duì)于$T(\overrightarrow a,\overrightarrow b)=t\overrightarrow a+\overrightarrow b$,求t的值(用$\overrightarrow a,\overrightarrow b$表示);
(Ⅱ)求證:$T(\overrightarrow a,\overrightarrow b)⊥\overrightarrow a$;
(Ⅲ)若$|\overrightarrow{a_1}|=|\overrightarrow{a_2}|=1$,且$<\overrightarrow{a_1},\overrightarrow{a_2}>=\frac{π}{3}$,構(gòu)造向量序列${\overrightarrow a_n}=T(\overrightarrow{{a_{n-2}}},\overrightarrow{{a_{n-1}}})$,其中n∈N*,n≥3,請(qǐng)直接寫出$|{\overrightarrow{a_n}}|$的值(用n表示,其中n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-2x+a1nx.a(chǎn)∈R.
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與直線x+y-1=0平行,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a>0,函數(shù)g(x)=f(x)+2x+2a|lnx-1|,求函數(shù)g(x)在[$\frac{1}{e}$,+∞)上的最小值.(注:e是自然對(duì)數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2+4x=0},B={x|x2+2(a+1)+a2-1=0}
(1)若A∪B=A∩B,求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=x0,g(x)=1B.$f(x)=\sqrt{x^2}$,g(x)=x
C.f(x)=$\frac{1}{3}{x^2},g(x)=\frac{x^3}{3x}$D.f(x)=$\root{3}{{{x^4}-{x^3}}},g(x)=x•\root{3}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α是第二象限角.試確定以下角的位置:
(1)2α:
(2)$\frac{α}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案