分析 (Ⅰ)取AB的中點(diǎn)O,連接PO,CO,AC;證明AB⊥平面PCO即可;
(Ⅱ)根據(jù)題意,以O(shè)為坐標(biāo)原點(diǎn),以O(shè)C,OB,OP為x軸,y軸,z軸建立空間直坐標(biāo)系O-xyz,
求出平面BCP的一個(gè)法向量,假設(shè)存在點(diǎn)Q滿足題意,求滿足條件的點(diǎn)Q坐標(biāo)是否存在.
解答 解:(Ⅰ)證明:取AB的中點(diǎn)O,連接PO,CO,AC;…(1分)
∵AP=BP,∴PO⊥AB;…(2分)
又四邊形ABCD是菱形,且∠BCD=120°,
∴△ACB是等邊三角形,∴CO⊥AB;
又CO∩PO=O,∴AB⊥平面PCO;…(4分)
又PC?平面PCO,∴AB⊥PC;…(5分)
(Ⅱ)由AB=PC=2,$AP=BP=\sqrt{2}$,得PO=1,$OC=\sqrt{3}$,
∴OP2+OC2=PC2,OP⊥OC;…(6分)
以O(shè)為坐標(biāo)原點(diǎn),以O(shè)C,OB,OP分別為x軸,y軸,z軸建立空間直坐標(biāo)系O-xyz,
則B(0,1,0),$C(\sqrt{3},0,0)$,P(0,0,1),$D(\sqrt{3},-2,0)$,
∴$\overrightarrow{BC}=(\sqrt{3},-1,0)$,$\overrightarrow{PC}=(\sqrt{3},0,-1)$,$\overrightarrow{AD}=(\sqrt{3},-1,0)$;…(7分)
設(shè)平面BCP的一個(gè)法向量為$\overrightarrow n=(1,b,c)$,則$\overrightarrow n⊥\overrightarrow{PC}$,$\overrightarrow n⊥\overrightarrow{BC}$,
∴$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{PC}=\sqrt{3}-c=0\\ \overrightarrow n•\overrightarrow{BC}=\sqrt{3}-b=0\end{array}\right.$,
∴$c=\sqrt{3}$,$b=\sqrt{3}$,
∴$\overrightarrow n=(1,\sqrt{3},\sqrt{3})$…(10分)
假設(shè)存在點(diǎn)Q滿足題意,設(shè)Q(a,b,0),
∵點(diǎn)Q在線段AD上,則設(shè)$\overrightarrow{AQ}=λ\overrightarrow{AD}$$(a,b+1,0)=λ(\sqrt{3},-1,0)$,
解得$Q(\sqrt{3}λ,-1-λ,0)$,
∴$\overrightarrow{CQ}=(\sqrt{3}λ-\sqrt{3},-1-λ,0)$;…(11分)
依題意$sinθ=cos<\overrightarrow{CQ},\overrightarrow n>=\frac{{\overrightarrow{CQ}•\overrightarrow n}}{{|{\overrightarrow{CQ}}|•|{\overrightarrow n}|}}=\frac{{2\sqrt{7}}}{7}$,
代入解得$λ=\frac{1}{2}$;
∴存在點(diǎn)Q滿足題意,點(diǎn)Q為AD中點(diǎn). …(13分)
點(diǎn)評(píng) 本題考查了空間中的位置關(guān)系的應(yīng)用問(wèn)題,也考查了空間向量的應(yīng)用問(wèn)題,考查了空間想象能力與邏輯思維能力的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -10<a≤0 | B. | -1<a≤0 | C. | 0≤a<1 | D. | 0≤a<10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{\sqrt{5}+1}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在圓外 | B. | 在圓上 | C. | 在圓內(nèi) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com