17.已知函數(shù)f(x)=x2016,則f′[($\frac{1}{2016}$)${\;}^{\frac{1}{2015}}$]=1.

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo),再代值計(jì)算即可.

解答 解:∵f(x)=x2016,
∴f′(x)=2016x2015
∴f′[($\frac{1}{2016}$)${\;}^{\frac{1}{2015}}$]=2016×[($\frac{1}{2016}$)${\;}^{\frac{1}{2015}}$]2015=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出以下五個(gè)命題:
①一個(gè)底面半徑為1,母線長為2的圓錐的表面積為3π;
②設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=sinx-2cosx取得最大值,則cosθ=-$\frac{2\sqrt{5}}{5}$;
③已知數(shù)列{an}是等差數(shù)列,若它的前n項(xiàng)和Sn有最小值,且$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,則使Sn>0成立的最小自然數(shù)為19;
④函數(shù)f(x)=|lgx|,若0<m<n,且f(m)=f(n),則m+2n的取值范圍為[2$\sqrt{2}$,+∞);
⑤半圓的直徑AB=4,O為圓心,C是半圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值是-2;
其中正確的命題有①②④(請(qǐng)將滿足題意的序號(hào)填寫在答題卷中的橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)2x2-3x+1≤0的解集為A,x2-(2a+1)x+a(a+1)≤0的解集為B,若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x(1+a|x|)(a∈R),設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為A,若$[{-\frac{1}{2},\frac{1}{2}}]⊆A$,則實(shí)數(shù)a的取值范圍是(  )
A.(-1,0)B.$({-1,\frac{{1-\sqrt{5}}}{2}})$C.$({\frac{{1-\sqrt{5}}}{2},0})$D.$({0,\frac{{1+\sqrt{5}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}滿足a1=2,?n∈N*,${a_{n+1}}=\frac{1}{{1-{a_n}}}$,則a2016=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知tanα,tanβ為方程x2-5x+2=0的解,則tan(α+β)的值為(  )
A.$\frac{1}{5}$B.5C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若c2+ab=a2+b2,則角C=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等$\frac{1}{a-b}+\frac{1}{b-c}+\frac{λ}{c-a}<0$對(duì)滿足a>b>c恒成立,則λ的取值范圍 ( 。
A.(-∞,0]B.(-∞,1)C.(-∞,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.根據(jù)下列條件,確定數(shù)列{an}的通項(xiàng)公式.
(1)a1=2,an+1=an+ln(1+$\frac{1}{n}$);
(2)a1=1,an=$\frac{n-1}{n}{a}_{n-1}$(n≥2).

查看答案和解析>>

同步練習(xí)冊(cè)答案