5.設(shè)F1,F(xiàn)2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{16}$=1(a>0)的左、右焦點,點P為雙曲線C右支上一點,如果|PF1|-|PF2|=6,那么雙曲線C的方程為$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1;離心率為$\frac{5}{3}$.

分析 利用雙曲線的定義求出a,然后求解離心率即可.

解答 解:F1,F(xiàn)2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{16}$=1(a>0)的左、右焦點,點P為雙曲線C右支上一點,如果|PF1|-|PF2|=6,可得a=3,
雙曲線方程為:$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1,則b=4,c=5,
雙曲線的離心率為:e=$\frac{5}{3}$.
故答案為:$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1;$\frac{5}{3}$.

點評 本題考查雙曲線方程的求法,雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y=x2-1上的一定點B(-1,0)和兩個動點P、Q,當(dāng)BP⊥PQ時,點Q的橫坐標(biāo)的取值范圍是(  )
A.(-∞,-3]∪[1,+∞)B.[-3,1]
C.(-∞,-3]∪[1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=0,an+1=an+$\frac{1}{n(n+1)}$+1.
(1)證明數(shù)列{an+$\frac{1}{n}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)(理科)設(shè)數(shù)列{$\frac{{a}_{n}}{n}$}的前n項和為Sn,證明Sn<$\frac{{n}^{2}}{n+1}$.
(文科)設(shè)bn=$\frac{{a}_{n}}{n+1}$,求數(shù)列{bn}前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)的極值點為m、n,滿足|m-n|≤a,且|f(m)-f(n)|≤a,則稱函數(shù)f(x)為“密集a函數(shù)”,設(shè)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1(a≠0)是“密集3函數(shù)”,則a的取值范圍是$[-\frac{2}{3},0)∪(0,\frac{2}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點P(sinα-cosα,tanα)在第二象限,則α的一個變化區(qū)間是( 。
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.$({-\frac{π}{4},\frac{π}{4}})$C.$({-\frac{3π}{4},-\frac{π}{2}})$D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點F1作一條漸近線的垂線,垂足為A,與另一條漸近線交于點B,若A恰好是F1B的中點,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題p:?x∈R,ex-mx=0,命題q:f(x)=$\frac{1}{3}{x^3}$-mx2-2x在[-1,1]遞減,若p∨(?q)為假命題,則實數(shù)m的取值范圍為(  )
A.[0,$\frac{1}{2}$]B.[-3,0]C.[-3,e)D.[0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{x}^{2}}{lnx}$
(1)求f(x)的單調(diào)區(qū)間;
(2)若方程g(x)=tf(x)-x在[$\frac{1}{e}$,1]∪(1,e2]上有兩個零點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列{an}滿足a1=1,a2=2,an=$\frac{{a}_{n+1}}{{a}_{n+2}}$(a≥3且a∈N+),求a7的值.

查看答案和解析>>

同步練習(xí)冊答案