分析 求出函數(shù)的導(dǎo)數(shù)得到極值點(diǎn),然后利用新定義,求解即可.
解答 解:f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1,可得f′(x)=ax2+ax-2a.∵a≠0,∴令f′(x)=0,解得x=-2,或x=1,由新定義可知:|f(-2)-f(1)|=|$-\frac{8}{3}a+2a+4a-\frac{a}{3}-\frac{a}{2}+2a$|=|$\frac{9a}{2}$|≤3,解得$-\frac{2}{3}≤a≤\frac{2}{3}$,又a≠0,
所以,a∈$[-\frac{2}{3},0)∪(0,\frac{2}{3}]$.
故答案為:$[-\frac{2}{3},0)∪(0,\frac{2}{3}]$.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值的求法,新定義的理解與應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0] | B. | [-1,2) | C. | [1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com