17.(1)已知f(x)是一次函數(shù),且f(f(x))=4x-1,求f(x);
(2)已知f(x)=ax2+bx+c,若f(0)=0,f(x+1)=f(x)+x+1,求f(x)

分析 (1)根據(jù)f(x)為一次函數(shù),從而可設(shè)f(x)=kx+b,這樣可求出f(f(x))=k2x+kb+b=4x-1,讓對應(yīng)項(xiàng)的系數(shù)相等,從而可求出k,b,即可求出f(x);
(2)先根據(jù)f(0)=0便得出c=0,從而f(x)=ax2+bx,然后可求出f(x+1),從而根據(jù)f(x+1)=f(x)+x+1,由對應(yīng)項(xiàng)的系數(shù)相等從而可求出a,b,從而可得出f(x).

解答 解:(1)設(shè)f(x)=kx+b,則f(f(x))=f(kx+b)=k(kx+b)+b=k2x+kb+b=4x-1;
∴$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=-1}\end{array}\right.$;
∴$\left\{\begin{array}{l}{k=2}\\{b=-\frac{1}{3}}\end{array}\right.,或\left\{\begin{array}{l}{k=-2}\\{b=1}\end{array}\right.$;
∴$f(x)=2x-\frac{1}{3}$,或f(x)=-2x+1;
(2)f(0)=0;
∴c=0;
∴f(x)=ax2+bx;
∴f(x+1)=a(x+1)2+b(x+1)=ax2+(2a+b)x+a+b;
∴由f(x+1)=f(x)+x+1得:ax2+(2a+b)x+a+b=ax2+(b+1)x+1;
∴$\left\{\begin{array}{l}{2a+b=b+1}\\{a+b=1}\end{array}\right.$;
解得$a=\frac{1}{2}$,$b=\frac{1}{2}$;
∴$f(x)=\frac{1}{2}{x}^{2}+\frac{1}{2}x$.

點(diǎn)評 考查一次函數(shù)的一般形式,已知f(x)可求f[g(x)]:將f(x)中的x換成g(x),多項(xiàng)式相等時(shí),對應(yīng)的項(xiàng)的系數(shù)相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+1,g(x)=3x+5.
(1)當(dāng)x∈[0,m]時(shí),恒有f(x)≤g(x),求m的最大值.
(2)非空集合A滿足:對于A中的任意一個(gè)x,總有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且對任意實(shí)數(shù)x,y滿足f(x-y)=f(x)+f(y)+xy-1恒成立.
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)在定義域(-2,2)上是增函數(shù),且f(2+a)>f(2a-1),求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{{a}^{2}+1}$+$\frac{{y}^{2}}{(a+4)^{2}}$=1(a>0)的離心率的最大值是$\frac{4\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)是定義在R上奇函數(shù),且當(dāng)x>0時(shí).f(x)=-ax+a2-1 若f(x)在R上是減函數(shù),關(guān)于a描述正確的是( 。
A.a=$\sqrt{2}$B.1<a≤$\sqrt{2}$C.a≥$\sqrt{2}$D.a∈(0,1)∪(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{2x+1,x<0}\end{array}\right.$,若f(x)>x,則x的取值范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={y|y=x2},B={y|y=x+2},則A∩B=[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(m,8),若$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|,則實(shí)數(shù)m的值是2$\sqrt{11±\sqrt{119}}$.

查看答案和解析>>

同步練習(xí)冊答案