分析 (1)把a2,a3表示為a1的式子,通過對a1的范圍進行討論去掉絕對值符號,根據(jù)a1,a2,a3成等比數(shù)列可得關(guān)于a1的方程,解出即可.
(2)假設這樣的等差數(shù)列存在,則a1,a2,a3成等差數(shù)列,即2a2=a1+a3,亦即2-a1+|2-|a1||=2|a1|,由0<a1≤2能求出所有符合題意的a1的值.
解答 解:(1)∵數(shù)列{αm}滿足0<a1<2,an+1=2-|an|,n∈N*,
∴a2=2-a1,a3=2-|2-a1|=a1,
∵a1,a2,a3成等比數(shù)列,∴(2-a1)2=${{a}_{1}}^{2}$,
解得a1=1.
(2)假設這樣的等差數(shù)列存在,則
由2a2=a1+a3,得2(2-a1)=a1+(2-|2-a1|),即|2-a1|=3a1-2.
∵0<a1≤2,∴2-a1=3a1-2,解得a1=1,
從而an=1(n∈N*),此時{an}是一個等差數(shù)列;
綜上可知,當且僅當a1=1時,數(shù)列{an}為等差數(shù)列.
點評 本題考查數(shù)列的首項的求法,是中檔題,解題時要認真審題,注意等比數(shù)列和等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
男生 | 女生 | 合計 | |
收看 | 10 | ||
不收看 | 8 | ||
合計 | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 37 | B. | 13 | C. | 25 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com