10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x-3,x<2}\\{(x-2)^{2}-1,x≥2}\end{array}\right.$,若函數(shù)y=f(f(x)-a)有四個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是a≥2.

分析 畫出函數(shù)f(x)=$\left\{\begin{array}{l}{-x-3,x<2}\\{(x-2)^{2}-1,x≥2}\end{array}\right.$的圖象可得函數(shù)f(x)有兩個(gè)零點(diǎn)-3,3,令t=f(x)-a,若函數(shù)y=f(f(x)-a)有四個(gè)零點(diǎn),則t=f(x)-a=-3和t=f(x)-a=3各有兩個(gè)零點(diǎn),進(jìn)而得到答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{-x-3,x<2}\\{(x-2)^{2}-1,x≥2}\end{array}\right.$的圖象如下圖所示:

由圖可得:函數(shù)f(x)有兩個(gè)零點(diǎn)-3,3,
令t=f(x)-a,
若函數(shù)y=f(f(x)-a)有四個(gè)零點(diǎn),則t=f(x)-a=-3和t=f(x)-a=3各有兩個(gè)零點(diǎn),
即f(x)的圖象與直線y=a+3和直線y=a-3各有兩個(gè)交點(diǎn),
則a-3≥-1,
即a≥2,
故答案為:a≥2

點(diǎn)評 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn),數(shù)形結(jié)合思想,正確理解函數(shù)y=f(f(x)-a)有四個(gè)零點(diǎn)的含義,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,且a2+c2+ac=(ccosA+acosC)2
(1)求B的大;
(2)若b=$\sqrt{13}$,a+c=4,a>c,求向量$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinα=$\frac{\sqrt{3}}{2}$,且α是第二象限角,求α的其他三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.log0.11000=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{αm}滿足0<a1<2,an+1=2-|an|,n∈N*
(1)若a1,a2,a3成等比數(shù)列,求a1的值.
(2)是否存在a1,使數(shù)列{an}為等差數(shù)列?若存在,求出所有符合題意的a1的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓M的參數(shù)方程為$\left\{\begin{array}{l}x=cosφ\\ y=sinφ\end{array}\right.(φ$為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓N的極坐標(biāo)方程為$ρ=2cos(θ+\frac{π}{3})$.
(1)將圓M的參數(shù)方程化為普通方程,將圓N的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)圓M,N是否相交,若相交,請求出公共弦長,若不相交請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某品牌專賣店準(zhǔn)備在國慶期間舉行促銷活動(dòng),根據(jù)市場調(diào)查,該店決定從2種不同型號(hào)的洗衣機(jī),2種不同型號(hào)的電視機(jī)和3種不同型號(hào)的空調(diào)中(不同種商品的型號(hào)不同),選出4種不同型號(hào)的商品進(jìn)行促銷,該店對選出的商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高150元,同時(shí),若顧客購買該商品,則允許有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都獲得m元獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否的概率都是0.5,設(shè)顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額(單位:元)為隨機(jī)變量X.
(Ⅰ)求選出的4種不同型號(hào)商品中,洗衣機(jī)、電視機(jī)、空調(diào)都至少有一種型號(hào)的概率;
(Ⅱ)請寫出X的分布列,并求X的數(shù)學(xué)期望;
(Ⅲ)在(Ⅱ)的條件下,問該店若想采用此促銷方案獲利,則每次中獎(jiǎng)獎(jiǎng)金要低于多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表.
區(qū)間[25,30)[30,35)[35.40)[40,45)[45,50)
人數(shù)25ab
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為$\frac{2}{3}$,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為$\frac{2}{5}$,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

同步練習(xí)冊答案