7.如圖,在圓x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是橢圓,那么這個(gè)橢圓的離心率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用已知條件求出橢圓的方程,然后利用橢圓的離心率即可.

解答 解:設(shè)M(x,y),則P(x,2y),代入圓的方程并化簡(jiǎn)得:$\frac{{x}^{2}}{4}+{y}^{2}=1$,
解得a=2,b=1,c=$\sqrt{3}$.
橢圓的離心率為:$\frac{\sqrt{3}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查軌跡方程的求法,橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.試說(shuō)明y=sin2x與y=sin2x的圖象之間有什么樣的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow$|=2,$\overrightarrow$⊥(2$\overrightarrow{a}$-$\overrightarrow$),求|t$\overrightarrow$+(1-2t)$\overrightarrow{a}$|(t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=alnx-2ax+b.函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程是y=2x+1,則a+b的值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在復(fù)平面內(nèi),復(fù)數(shù)z=(1+i)(2-i)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為 4的菱形,PD=PB=4,∠BAD=60°,E為PA中點(diǎn).
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求證:平面EBD⊥平面PAC;
(Ⅲ)若PA=PC,求三棱錐C-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知某種動(dòng)物服用某種藥物一次后當(dāng)天出現(xiàn)A癥狀的概率為$\frac{1}{3}$.為了研究連續(xù)服用該藥物后出現(xiàn)A癥狀的情況,做藥物試驗(yàn).試驗(yàn)設(shè)計(jì)為每天用藥一次,連續(xù)用藥四天為一個(gè)用藥周期.假設(shè)每次用藥后當(dāng)天是否出現(xiàn)A癥狀的出現(xiàn)與上次用藥無(wú)關(guān).
(Ⅰ)如果出現(xiàn)A癥狀即停止試驗(yàn)”,求試驗(yàn)至多持續(xù)一個(gè)用藥周期的概率;
(Ⅱ)如果在一個(gè)用藥周期內(nèi)出現(xiàn)3次或4次A癥狀,則這個(gè)用藥周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)兩個(gè)周期.設(shè)藥物試驗(yàn)持續(xù)的用藥周期數(shù)為η,求η的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.從集合{0,2,4,6,8}中隨機(jī)取一個(gè)數(shù)m,從集合{0,4,8}中隨機(jī)取一個(gè)數(shù)n,則“事件m≤n”發(fā)生的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+ax+4
(Ⅰ)當(dāng)a=-5時(shí),解不等式f(x)>0;
(Ⅱ)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案