分析 $\frac{_{n+1}}{_{n}}$=$\frac{3n}{2n+2}$,對n分類討論,利用數(shù)列的單調(diào)性即可得出.
解答 解:$\frac{_{n+1}}{_{n}}$=$\frac{\frac{1}{n+1}•(\frac{3}{2})^{n+1}}{\frac{1}{n}•(\frac{3}{2})^{n}}$=$\frac{3n}{2n+2}$,
3n-(2n+2)=n-2,
當(dāng)n≤2時(shí),$\frac{_{n+1}}{_{n}}$≤1,∴b1>b2,單調(diào)遞減;當(dāng)n≥3時(shí),$\frac{_{n+1}}{_{n}}$>1,∴bn<bn+1,單調(diào)遞增.
b2=$\frac{9}{8}$=b3,
∴當(dāng)n=2,3時(shí),bn的最小值為$\frac{9}{8}$.
點(diǎn)評 本題考查了數(shù)列的單調(diào)性、遞推關(guān)系的應(yīng)用,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S2mS2n≥Sm+n2,lnS2mlnS2n≤ln2Sm+n | |
B. | S2mS2n≤Sm+n2,lnS2mlnS2n≤ln2Sm+n | |
C. | S2mS2n≥Sm+n2,lnS2mlnS2n≥ln2Sm+n | |
D. | S2mS2n≤Sm+n2,lnS2mlnS2n≥ln2Sm+n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com