分析 (1)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)求解函數(shù)的單調(diào)減區(qū)間即可.
(2)利用函數(shù)值求出$cos(\frac{x}{2}-\frac{π}{6})$,然后利用兩角和與差的三角函數(shù)求解即可.
解答 解:(1)由題向量$\overrightarrow{a}$=(-$\sqrt{3}$sin$\frac{x}{2}$,1),$\overrightarrow$=(1,cos$\frac{x}{2}$+2),
函數(shù)f(x)=$\frac{3}{2}$$\overrightarrow{a}$•$\overrightarrow$=(-$\sqrt{3}$sin$\frac{x}{2}$,1)•(1,cos$\frac{x}{2}$+2)=$\frac{3}{2}$($-\sqrt{3}$$sin\frac{x}{2}+cos\frac{x}{2}+2$)=$-3sin(\frac{x}{2}-\frac{π}{6})+3$
由$2kπ-\frac{π}{2}≤\frac{x}{2}-\frac{π}{6}≤2kπ+\frac{π}{2}$,k∈Z得$4kπ-\frac{2π}{3}≤x≤4kπ+\frac{4π}{3}$,
因為x∈[-π,$\frac{5π}{3}$],所以當(dāng)k=0時,x∈$[-\frac{2π}{3},\frac{4π}{3}]$,
即f(x)在x∈[-π,$\frac{5π}{3}$]的單調(diào)減區(qū)間為$[-\frac{2π}{3},\frac{4π}{3}]$.
(2)由f(x)=2,得$sin(\frac{x}{2}-\frac{π}{6})=\frac{1}{3}$,
因為$x∈[\frac{π}{3},π]$,知$\frac{x}{2}-\frac{π}{6}∈[0,\frac{π}{3}]$,
所以$cos(\frac{x}{2}-\frac{π}{6})=\frac{2\sqrt{2}}{3}$,
所以cos$\frac{x}{2}$=$cos[(\frac{x}{2}-\frac{π}{6})+\frac{π}{6}]=cos(\frac{x}{2}-\frac{π}{6})cos\frac{π}{6}-sin(\frac{x}{2}-\frac{π}{6})sin\frac{π}{6}=\frac{2\sqrt{6-1}}{6}$.
點評 本題考查向量的綜合應(yīng)用,三角函數(shù)的化簡求值,單調(diào)區(qū)間的求法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 原命題為真,否命題為假 | B. | 原命題為假,否命題為真 | ||
C. | 原命題與否命題均為真命題 | D. | 原命題與否命題均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | -2$\sqrt{5}$ | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
豬的重量分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
豬的重量分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |$\overrightarrow$|=1 | B. | $\overrightarrow{a}$⊥$\overrightarrow$ | C. | $\overrightarrow{a}$•$\overrightarrow$=1 | D. | (4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{BC}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com