一批設(shè)備價(jià)值2萬元,由于使用磨損,每年比上一年價(jià)值降低50%,則4年后這批設(shè)備的價(jià)值為
 
萬元.
考點(diǎn):有理數(shù)指數(shù)冪的化簡求值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)一批設(shè)備價(jià)值1萬元,每年比上一年價(jià)值降低50%,可得每年設(shè)備的價(jià)值,組成
1
2
為公比的等比數(shù)列,由此可得結(jié)論.
解答: 解:∵一批設(shè)備價(jià)值2萬元,每年比上一年價(jià)值降低50%,
∴4年后這批設(shè)備的價(jià)值為2(1-50%)4=
1
8

故答案為:
1
8
點(diǎn)評(píng):本題考查等比數(shù)列模型的構(gòu)建,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓O1與圓O2交于A,B兩點(diǎn),圓O1上的點(diǎn)M處切線交圓O2于D,E兩點(diǎn),交直線AB于點(diǎn)C.若CM=2,CD=1,且∠DBE=30°,則圓O2的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)(1)y=πx;(2)y=2x-1;(3)y=
1
x
;(4)y=2-1-3x中,是一次函數(shù)的有( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,使sinx=
5
2
;命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:
①命題“p∧q”是真命題;
②命題“¬p∨q”是假命題
③命題“¬p∨q”是真命題;              
④命題“p∨¬q”是假命題;
其中正確的是( 。
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+ax-1(e為自然對(duì)數(shù)的底數(shù)),
(1)當(dāng)a=1時(shí),求在點(diǎn)(1,f(1))處的切線方程;
(2)討論的函數(shù)f(x)單調(diào)性;
(3)若f(x)≥x2在(0,1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A⊆{2,3,9}且A中至少有一個(gè)奇數(shù),則這樣的集合有( 。
A、6個(gè)B、5個(gè)C、4個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0且
4
x
+
1
y
=1,則x+y最小值是( 。
A、9
B、
9
2
C、5+2
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+1≥0
x+y-2≤0
x≥0,y≥0
,則z=x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={m|
m-4
2
∈Z
},N={x|
x+3
2
∈N}
,則M∩N=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案