18.定積分${∫}_{-1}^{2}$|x2-1|dx=$\frac{8}{3}$.

分析 利用定積分的運(yùn)算性質(zhì),結(jié)合分段函數(shù)的性質(zhì),即可求得定積分的值.

解答 解:${∫}_{-1}^{2}$|x2-1|dx=${∫}_{-1}^{1}$(1-x2)dx+${∫}_{1}^{2}$(x2-1)dx,
=(x-$\frac{1}{3}$x3)${丨}_{-1}^{1}$+($\frac{1}{3}$x3-x)${丨}_{1}^{2}$,
=$\frac{4}{3}$+$\frac{4}{3}$,
=$\frac{8}{3}$,
故答案為:$\frac{8}{3}$.

點(diǎn)評 本題考查求分段函數(shù)定積分,考查了微積分基本定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=PB,AD=DB,則(  )
A.PD?平面ABCB.PD⊥平面ABC
C.PD與平面ABC相交但不垂直D.PD∥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,O為同一平面上任一點(diǎn),試用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.投資生產(chǎn)某種產(chǎn)品,并用廣告方式促銷,已知生產(chǎn)這種產(chǎn)品的年固定投資為10萬元,每生產(chǎn)1萬件產(chǎn)品還需投入18萬元,又知年銷量W(萬件)與廣告費(fèi)x(萬元)之間的函數(shù)關(guān)系為W=$\frac{kx+1}{x+1}$(x≥0),且知投入廣告費(fèi)1萬元時(shí),可多銷售2萬件產(chǎn)品,預(yù)計(jì)此種產(chǎn)品年銷售收入M(萬元)等于年成本(萬元)(年成本中不含廣告費(fèi)用)的150%與年廣告費(fèi)用50%的和.
(1)試將年利潤y(萬元)表示為年廣告費(fèi)x(萬元)的函數(shù);
(2)當(dāng)年廣告費(fèi)為多少萬元時(shí),年利潤最大?最大年利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(x+y+3)5展開式中不含y的各項(xiàng)系數(shù)之和為( 。
A.25B.35C.45D.(x+3)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\frac{3-2x}{x+1}$(x∈[0,1])的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,3]B.(-2,$\frac{1}{2}$]C.[$\frac{1}{2}$,3]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a,b為實(shí)數(shù),如果矩陣A=$[\begin{array}{l}{a}&{1}\\{0}&\end{array}]$所對應(yīng)的變換T把直線x-y=1變換為自身,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a(a≠3),an+1=Sn+3n,設(shè)bn=sn-3n,n∈N+
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N+,求實(shí)數(shù)a的最小值;
(3)若一個(gè)數(shù)列的前n項(xiàng)和為An,若An可以寫出tp(t,p∈N+且t>1,p>1)的形式,則稱An為“指數(shù)型和”.
當(dāng)a=4時(shí),給出一個(gè)新數(shù)列{en},其中en=$\left\{\begin{array}{l}{3,n=1}\\{_{n},n≥2}\end{array}$,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Cn.,問{Cn}中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(diǎn)(e2,f(e2))處的切線與直線2x+y=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù)k,使得對于定義域內(nèi)的任意x,f(x)>$\frac{k}{lnx}$+2$\sqrt{x}$恒成立,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案