【題目】已知函數(shù),其中為常數(shù).

(1)當時,討論的單調(diào)性;

(2)當時,求的最大值.

【答案】(1)當時,上單調(diào)遞增;在上單調(diào)遞減;

時,上單調(diào)遞增;

時,上單調(diào)遞增;在上單調(diào)遞減.

(2).

【解析】試題分析:(1)由題.分別討論當,,三種情況下的單調(diào)性;

(2)∵,

上的最大值等價于在上的最大值,

,記為,

, 討論的性質(zhì),可求的最大值.

試題解析:(1)對求導,得.

①當,即時,

時,,單增,

時,,單減;

②當時,即時,,上單增;

③當時,即時,

時,,上單增,

時,,上單減.

綜上所述,當時,上單調(diào)遞增;在上單調(diào)遞減;

時,上單調(diào)遞增;

時,上單調(diào)遞增;在上單調(diào)遞減.

(Ⅱ)∵

上的最大值等價于在上的最大值,

,記為,

由(Ⅰ)可知時,上單減,,

,從而上單減,

,∴上單增,

,

的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項能力(指標值滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達圖,圖中點A表示甲的創(chuàng)造力指標值為4,點B表示乙的空間能力指標值為3,則下面敘述正確的是

A. 乙的記憶能力優(yōu)于甲的記憶能力

B. 乙的創(chuàng)造力優(yōu)于觀察能力

C. 甲的六大能力整體水平優(yōu)于乙

D. 甲的六大能力中記憶能力最差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求不等式的解集;

2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于不等式.

1)若該不等式的解集為空集,求函數(shù)的最大值;

2)若,該不等式能成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1,求函數(shù)的極值;

2 時,判斷函數(shù)在區(qū)間上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,函數(shù)圖象上是否存在兩條互相垂直的切線,若存在,求出這兩條切線;若不存在,說明理由.

(2)若函數(shù)上有零點求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足 (),數(shù)列滿足 (),

1證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

2,求數(shù)列的前項和;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上無零點,求實數(shù)的最小值;

(2)若對任意給定的,在上方程總存在不等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案