11.已知命題p:對任意x∈R,ax2+2x+a≥0,命題q:存在$x∈R,a({sinx+2{{cos}^2}\frac{x}{2}-1})=\sqrt{2}$,證明p是q的充分不必要條件.

分析 分別求出p,q的a的范圍,結(jié)合集合的包含關(guān)系,從而證出結(jié)論.

解答 證明:關(guān)于命題p:對任意x∈R,ax2+2x+a≥0,
∴$\left\{\begin{array}{l}{a>0}\\{△=4-{4a}^{2}≤0}\end{array}\right.$,解得:a≥1,
∴p為真時(shí):a∈A=[1,+∞);
命題q:存在$x∈R,a({sinx+2{{cos}^2}\frac{x}{2}-1})=\sqrt{2}$,
∴a(sinx+1+cosx-1)=$\sqrt{2}$,
∴asin(x+$\frac{π}{4}$)=1,
∴q真時(shí)a∈B=(-∞,-1]∪[1,+∞),
因?yàn)锳是B的真子集,
∴p是q的充分不必要條件.

點(diǎn)評 本題考查了充分必要條件,考查二次函數(shù)、三角函數(shù)問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.把下列各角化成2kπ+α(0≤α<2π,k∈Z)的形式,并指出是第幾象限角:
(1)-1500°;
(2)$\frac{23π}{6}$;
(3)-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{2x+3}{3x}$,數(shù)列{an}滿足a1=1,an+1=f($\frac{1}{{a}_{n}}$),n∈N*.?dāng)?shù)列{an}的通項(xiàng)公式;(  )
A.an=$\frac{2}{3}$n+$\frac{1}{3}$B.an=$\frac{2}{3}$n-$\frac{1}{3}$C.an=$\frac{1}{3}$n+$\frac{1}{3}$D.an=$\frac{2}{3}$n+$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)等差數(shù)列的前項(xiàng)和為,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a為實(shí)數(shù),且2+ai=(1+i)(3+i),則a=( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.算法如果執(zhí)行下面的程序框圖,輸入n=6,m=4,那么輸出的p于( 。
A.12B.60C.360D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.滿足{-1,0}∪A={-1,0,1}的集合A共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={(x,y)|(x-1)2+(y-2)2≤$\frac{4}{5}$},B={(x,y)||x-1|+2|y-2|≤a},且A⊆B,則實(shí)數(shù)a的取值范圍是a≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若全集U=R,A=[1,3],B={x|x2-2x≤0},則A∩(∁UB)=( 。
A.[1,2]B.(-∞,0)∪(2,3]C.[0,1)D.(2,3]

查看答案和解析>>

同步練習(xí)冊答案