分析 (1)在給定空間直角坐標系中,求出$\overrightarrow{{C}_{1}F}$,$\overrightarrow{{D}_{1}E}$,由此能求出向量$\overrightarrow{{D_1}E}$與$\overrightarrow{{C_1}F}$的數(shù)量積.
(2)若MN⊥平面ABCD,則$\overrightarrow{MN}$與平面ABCD的法向量(0,0,1)平行,由此利用向量法能求出點M,N的坐標.
解答 解:(1)在給定空間直角坐標系中,
相關點及向量坐標為C1(0,0,2),F(xiàn)(2,2,1),$\overrightarrow{{C}_{1}F}$=(2,2,-1),
${D_1}(2,0,2),E(1,2,0),\overrightarrow{{D_1}E}=(-1,2,-2)$…(2分)…(4分
所以$\overrightarrow{{D_1}E}•\overrightarrow{{C_1}F}=-1×2+2×2+(-2)×(-1)=4$. …(6分)
(2)存在唯一直線MN,MN⊥平面ABCD. …(8分)
若MN⊥平面ABCD,則$\overrightarrow{MN}$與平面ABCD的法向量(0,0,1)平行,
所以設$M(a,a,m),N(a,a,n),\overrightarrow{MN}=(0,0,n-m),n≠m$…(10分)
又因為點M,N分別是線段D1E與線段C1F上的點,
所以$\overrightarrow{{D_1}M}∥\overrightarrow{{D_1}E},\overrightarrow{{C_1}N}∥\overrightarrow{{C_1}F}$,即$\overrightarrow{{D_1}M}=λ\overrightarrow{{D_1}E},\overrightarrow{{C_1}N}=t\overrightarrow{{C_1}F}$,…(12分)
(a-2,a,m-2)=(-λ,2λ,-2λ),(a,a,n-2)=(2t,2t,-t),
所以$\left\{\begin{array}{l}a-2=λ\\ a=2λ\\ m-2=-2λ\end{array}\right.$且$\left\{\begin{array}{l}a=2t\\ n-2=-t\end{array}\right.$,解得$\left\{\begin{array}{l}a=\frac{4}{3}\\ m=\frac{2}{3}\\ n=\frac{4}{3}\end{array}\right.$
所以點M,N的坐標分別是$M(\frac{4}{3},\frac{4}{3},\frac{2}{3})$,$N(\frac{4}{3},\frac{4}{3},\frac{4}{3})$. …(14分)
點評 本題考查向量的數(shù)量積的求法,考查滿足條件的點的坐標的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2+y2-6x-2y+6=0 | B. | x2+y2+6x-2y+6=0 | C. | x2+y2+6x+2y+6=0 | D. | x2+y2-2x-6y+6=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com