分析 (1)在給定空間直角坐標(biāo)系中,求出$\overrightarrow{{C}_{1}F}$,$\overrightarrow{{D}_{1}E}$,由此能求出向量$\overrightarrow{{D_1}E}$與$\overrightarrow{{C_1}F}$的數(shù)量積.
(2)若MN⊥平面ABCD,則$\overrightarrow{MN}$與平面ABCD的法向量(0,0,1)平行,由此利用向量法能求出點(diǎn)M,N的坐標(biāo).
解答 解:(1)在給定空間直角坐標(biāo)系中,
相關(guān)點(diǎn)及向量坐標(biāo)為C1(0,0,2),F(xiàn)(2,2,1),$\overrightarrow{{C}_{1}F}$=(2,2,-1),
${D_1}(2,0,2),E(1,2,0),\overrightarrow{{D_1}E}=(-1,2,-2)$…(2分)…(4分
所以$\overrightarrow{{D_1}E}•\overrightarrow{{C_1}F}=-1×2+2×2+(-2)×(-1)=4$. …(6分)
(2)存在唯一直線MN,MN⊥平面ABCD. …(8分)
若MN⊥平面ABCD,則$\overrightarrow{MN}$與平面ABCD的法向量(0,0,1)平行,
所以設(shè)$M(a,a,m),N(a,a,n),\overrightarrow{MN}=(0,0,n-m),n≠m$…(10分)
又因?yàn)辄c(diǎn)M,N分別是線段D1E與線段C1F上的點(diǎn),
所以$\overrightarrow{{D_1}M}∥\overrightarrow{{D_1}E},\overrightarrow{{C_1}N}∥\overrightarrow{{C_1}F}$,即$\overrightarrow{{D_1}M}=λ\overrightarrow{{D_1}E},\overrightarrow{{C_1}N}=t\overrightarrow{{C_1}F}$,…(12分)
(a-2,a,m-2)=(-λ,2λ,-2λ),(a,a,n-2)=(2t,2t,-t),
所以$\left\{\begin{array}{l}a-2=λ\\ a=2λ\\ m-2=-2λ\end{array}\right.$且$\left\{\begin{array}{l}a=2t\\ n-2=-t\end{array}\right.$,解得$\left\{\begin{array}{l}a=\frac{4}{3}\\ m=\frac{2}{3}\\ n=\frac{4}{3}\end{array}\right.$
所以點(diǎn)M,N的坐標(biāo)分別是$M(\frac{4}{3},\frac{4}{3},\frac{2}{3})$,$N(\frac{4}{3},\frac{4}{3},\frac{4}{3})$. …(14分)
點(diǎn)評 本題考查向量的數(shù)量積的求法,考查滿足條件的點(diǎn)的坐標(biāo)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-6x-2y+6=0 | B. | x2+y2+6x-2y+6=0 | C. | x2+y2+6x+2y+6=0 | D. | x2+y2-2x-6y+6=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com