17.已知$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn-100}{3n-1}$=2,則a、b的值分別為0、6.

分析 分子n的次數(shù)比分母n的次數(shù)高a=0,化簡即可求得b=6;

解答 解:$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn-100}{3n-1}$極限存在,
∴a=0,
$\underset{lim}{n→∞}$$\frac{bn-100}{3n-1}$=$\underset{lim}{n→∞}$$\frac{b-\frac{100}{n}}{3-\frac{1}{n}}$=$\frac{3}$=2,
∴b=6,
故答案為:0、6.

點評 本題求數(shù)列的極限及公式的簡單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-4x+alnx(a∈R,a≠0),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若存在實數(shù)x1,x2,且x1<x2,使得f′(x1)=f′(x2)=0,求證:f(x2)>-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知tan(π-α)=2,則tan2α=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.假設(shè)某人的手機在一天內(nèi)收到1條、2條、3條垃圾短信的概率分別為0.5、0.3、0.2,則該手機明天和后天一共收到至少5條垃圾短信的概率為( 。
A.0.1B.0.16C.0.2D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓P與圓C1關(guān)于直線l:x-y+3=0對稱,圓C1方程為:(x+3)2+(y-4)2=4.
(1)求圓P方程;
(2)點Q為直線l上一動點,過點Q作圓P的切線,求切線長的最小值;
(3)梯形ABCD(AB∥CD∥y軸,且AB>CD)內(nèi)接于圓P,點E是對角線AC與BD的交點,求$\frac{AB-CD}{PE}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等比數(shù)列{an}中,a1+a4=18,a2+a3=12,其中公比q為整數(shù),求:
①a1及q;
②S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若數(shù)列{an}的前n項和Sn=3n+1,則此數(shù)列的通項公式為an=$\left\{\begin{array}{l}{4,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3-2x2+x.
(1)求函數(shù)f(x)單調(diào)區(qū)間.
(2)求f(x)在區(qū)間[$\frac{1}{3},2$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.根據(jù)定積分的幾何含義,$\int_0^2{\sqrt{4-{x^2}}}dx$(  )$\int_0^22dx$.
A.B.C.D.=

查看答案和解析>>

同步練習(xí)冊答案