12.從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x}_{i}$=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$${{x}_{i}}^{2}$=720.家庭的月儲蓄y對月收入x的線性回歸方程為y=bx+a,若該居民區(qū)某家庭的月儲蓄為2千元,預測該家庭的月收入為8千元.
(附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

分析 利用已知條件求出,樣本中心坐標,利用參考公式求出b,a,然后求出線性回歸方程y=bx+a,通過x=2,利用回歸直線方程,推測該家庭的月儲蓄.

解答 解:(1)由題意知,n=10,$\overline{x}$=$\frac{1}{10}$$\sum_{i=1}^{10}{x}_{i}$=8,$\overline{y}$=$\frac{1}{10}$$\sum_{i=1}^{10}$yi=2,
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{184-10×8×2}{720-10×{8}^{2}}$=0.3,
a=$\overline{y}$-b$\overline{x}$=2-0.3×8=-0.4,
∴線性回歸方程為y=0.3x-0.4,
當y=2時,x=8,
故答案為:8.

點評 本題考查線性回歸方程的求解及應用,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.(1)若函數(shù)f(x)=$\sqrt{({a^2}-1){x^2}+(a-1)x+\frac{2}{a+1}}$的定義域為R,求實數(shù)a的取值范圍;
(2)已知f(x)的定義域是(0,1),求f(x+1)的定義域;
(3)已知f(x+1)的定義域是[-2,3],求f(2-x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}sin(α+\frac{π}{4})}\\{y=sin2α+1}\\{\;}\end{array}\right.$(α為參數(shù)),以O為原極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ2=4ρsinθ-3
(Ⅰ)求曲線C1與曲線C2在平面直角坐標系中的普通方程;
(Ⅱ)求曲線C1上的點與曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個體積為8$\sqrt{3}$的正三棱柱的三視圖如圖所示,則該三棱柱的俯視圖的面積為( 。
A.4$\sqrt{3}$B.4C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.${∫}_{0}^{\frac{π}{2}}$cosxdx等于( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.68B.72C.84D.90

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3^{x+1}}\\{log_2}x\end{array}$$\begin{array}{l},x≤1\\;x>1.\end{array}$,若f(x0)>3,則x0的取值范圍是( 。
A.x0>8B.0<x0≤1或x0>8C.0<x0<8D.-1<x0<0或0<x0<8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(3,4),則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.2D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,AB=3,AC=4,BC=5,O點是內(nèi)心,且$\overrightarrow{AO}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{BC}$,則λ12=$\frac{5}{6}$.

查看答案和解析>>

同步練習冊答案