1.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(3,4),則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.2D.10

分析 運(yùn)用向量數(shù)量積的坐標(biāo)表示和向量的模的公式,即可得到$\overrightarrow a$在$\overrightarrow b$方向上的投影$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$.

解答 解:$\overrightarrow a$=(2,1),$\overrightarrow b$=(3,4)可得
$\overrightarrow{a}$•$\overrightarrow$=2×3+1×4=10,
|$\overrightarrow$|=$\sqrt{{3}^{2}+{4}^{2}}$=5,
即有$\overrightarrow a$在$\overrightarrow b$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{10}{5}$=2.
故選:C.

點(diǎn)評 本題考查向量投影的定義,注意運(yùn)用向量數(shù)量積的坐標(biāo)表示和向量的模的公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.方程sin(2x-$\frac{π}{4}$)=|lgx|根的個(gè)數(shù)等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x}_{i}$=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$${{x}_{i}}^{2}$=720.家庭的月儲蓄y對月收入x的線性回歸方程為y=bx+a,若該居民區(qū)某家庭的月儲蓄為2千元,預(yù)測該家庭的月收入為8千元.
(附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l的參數(shù)方程:$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$.
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)曲線C與直線l交于A,B兩點(diǎn),若P(1,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某個(gè)服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利潤y/元與該周每天銷售這種服裝件數(shù)x/件之間的數(shù)據(jù)如表:
X3456789
y66697381899091
已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求$\overline x$,$\overline y$;
(2)畫出散點(diǎn)圖;
(3)判斷純利潤y與每天銷售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知θ∈(0,$\frac{π}{2}$),則sinθ+$\sqrt{3}$cosθ的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.由以下這組數(shù)據(jù)得線性回歸方程一定過點(diǎn)( 。
x-4-3-2-11234
  y3.62.51.9-0.3-1.4-2-2.3-2
A.(-2,1.9)B.(0,0)C.(2,-2)D.(-3,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A、B、C所對的邊分別為a、b、c,已知c=2a,sinA=$\frac{1}{2}$,則sinC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知四棱臺ABCD-A1B1C1D1的上下底面分別是邊長為2和4的正方形,AA1=4且AA1⊥底面ABCD,點(diǎn)P為DD1的中點(diǎn).
(I)求證:AB1⊥面PBC;
(Ⅱ)在BC邊上找一點(diǎn)Q,使PQ∥面A1ABB1,并求二面角B1-PQ-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案