9.在平面直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知圓O1的極坐標(biāo)方程為ρ=4cosθ,圓O2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=-2+2sinα}\end{array}\right.$(α為參數(shù)).
(1)把圓O1和圓O2的方程化為直角坐標(biāo)方程;
(1)求經(jīng)過圓O1與圓O2的交點(diǎn)的直線的直角坐標(biāo)方程.

分析 (1)對(duì)圓O1的極坐標(biāo)方程兩邊同乘ρ即可得到普通方程,由圓O2的參數(shù)方程解出cosα,sinα,使用正余弦的平方和等于1消參數(shù)得到圓O2的直角坐標(biāo)方程;
(2)將兩圓普通方程相減即得公共弦方程.

解答 解:(1)∵ρ=4cosθ,∴ρ2=4ρcosθ,∴圓O1的直角坐標(biāo)方程為x2+y2-4x=0.
由$\left\{\begin{array}{l}{x=2cosα}\\{y=-2+2sinα}\end{array}\right.$得cosα=$\frac{x}{2}$,sinα=$\frac{y+2}{2}$,
∴圓O2的直角坐標(biāo)方程為($\frac{x}{2}$)2+($\frac{y+2}{2}$)2=1,即x2+y2+4y=0.
(2)將兩圓的普通方程相減得-4x-4y=0,即x+y=0.
∴經(jīng)過圓O1與圓O2的交點(diǎn)的直線的直角坐標(biāo)方程為x+y=0.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,圓與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在乒乓球單打比賽中,由于參賽選手較多,故常采取“抽簽捉對(duì)淘汰制”決出冠軍.若共有100名選手參賽,待冠軍產(chǎn)生時(shí),共需舉行多少場(chǎng)比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l:ρsinθ-ρcosθ=$\frac{1}{2}$與曲線C交于P、Q兩點(diǎn).
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C上當(dāng)φ=$\frac{2}{3}π$時(shí)所對(duì)應(yīng)的點(diǎn)為M,求△MPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=xa的圖象過點(diǎn)(4,2),令an=$\frac{1}{f(n+1)+f(n)}$,n∈N*,記數(shù)列{an}的前n項(xiàng)和為Sn,則S2014=( 。
A.$\sqrt{2013}$-1B.$\sqrt{2014}$-1C.$\sqrt{2015}$-1D.$\sqrt{2015}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)A的坐標(biāo)為(2-3sinα,3cosα-2),其中α∈R.在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線C的方程為ρcos(θ-$\frac{π}{4}$)=a
(Ⅰ)寫出動(dòng)點(diǎn)A的軌跡的參數(shù)方程并說明軌跡的形狀;
(Ⅱ)若直線C與動(dòng)點(diǎn)A的軌跡有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=2t}\end{array}\right.$(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox軸為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C交于A、B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線3x-4y=0與圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù))的位置關(guān)系是(  )
A.相切B.相離
C.直線過圓心D.相交但直線不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,設(shè)A,B,P是橢圓$\frac{{x}^{2}}{3}$+y2=1上的三個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0.動(dòng)點(diǎn)Q在線段AB上,且$\overrightarrow{OQ}$•$\overrightarrow{AB}$=0,則|$\overrightarrow{PQ}$|的取值范圍為[1-$\frac{\sqrt{3}}{2}$,$\frac{3\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列各函數(shù)值:①sin100°;②cos(-100°);③tan(-100°);④$\frac{sin\frac{7π}{10}cosπ}{tan\frac{17π}{9}}$.其中符號(hào)為負(fù)的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案