14.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=2t}\end{array}\right.$(t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox軸為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C交于A、B兩點,求線段AB的長度.

分析 (1)對曲線C的極坐標(biāo)方程兩邊同乘ρ即可得到普通方程;
(2)求出直線l的普通方程,計算圓心到直線l的距離,使用垂徑定理求出AB的長.

解答 解:(1)∵曲線C的極坐標(biāo)方程為:ρ=4cosθ,∴ρ2=4ρcosθ,∴曲線C的直角坐標(biāo)方程為x2+y2-4x=0.
(2)由$\left\{\begin{array}{l}{x=1+t}\\{y=2t}\end{array}\right.$(t為參數(shù))得2x-y=2,∴直線l的普通方程為2x-y-2=0.
∴曲線C圓心(2,0)到直線l的距離d=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$.
∴AB=2$\sqrt{{2}^{2}-(\frac{2\sqrt{5}}{5})^{2}}$=$\frac{8\sqrt{5}}{5}$.

點評 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知O為坐標(biāo)原點,B、D分別是單位圓與x軸正半軸、y正半軸的交點,點P為單位圓劣弧$\widehat{BD}$上一點,若$\overrightarrow{OB}$+$\overrightarrow{OD}$=x$\overrightarrow{DB}$+y$\overrightarrow{OP}$,∠BOP=$\frac{π}{3}$,則x+y=( 。
A.1B.$\sqrt{3}$C.2D.4-3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)的定義域為A,若其值域也為A,則稱區(qū)間A為f(x)的保值區(qū)間,若f(x)=x+m-lnx的保值區(qū)間是(e,+∞),則m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點A,B分別在曲線C1:$\left\{\begin{array}{l}x=3+2cosθ\\ y=4+2sinθ\end{array}\right.$(θ為參數(shù))和曲線C2:ρ=2上,則|AB|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.已知圓O1的極坐標(biāo)方程為ρ=4cosθ,圓O2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=-2+2sinα}\end{array}\right.$(α為參數(shù)).
(1)把圓O1和圓O2的方程化為直角坐標(biāo)方程;
(1)求經(jīng)過圓O1與圓O2的交點的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10.曲線 c1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(Ⅰ)求曲線c1的普通方程;
(Ⅱ)若點M在曲線C1上運動,試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=ax2-2x+lnx+c(a>0)在[2,4]上無極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC中,A(1,1),C(4,2),點B在函數(shù)$y=\sqrt{x}(1<x<4)$的圖象上運動,問點B在何處時,△ABC的面積最大,最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知點A(-1,0)是拋物線的準(zhǔn)線與x軸的交點,M,N兩點在拋物線上且直線MN過A點,過M點及B(1,-1)的直線交拋物線于Q點.
(1)求拋物線的方程;
(2)求證:直線QN過一定點,并求出該點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案