12.設z=$\frac{2}{1-i}$+i,則|z|為( 。
A.1+2iB.1C.$\sqrt{13}$D.$\sqrt{5}$

分析 利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,則|z|可求.

解答 解:∵z=$\frac{2}{1-i}$+i=$\frac{2(1+i)}{(1-i)(1+i)}+i=1+2i$,
∴|z|=$\sqrt{{1}^{2}+{2}^{2}}=\sqrt{5}$.
故選:D.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知$\left\{{\frac{f(n)}{n}}\right\}$是等差數(shù)列,f(1)=2,f(2)=6,則f(n)=n(n+1),數(shù)列{an}滿足an+1=f(an),a1=1,數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的前n項和為Sn,則${S_{2015}}+\frac{1}{{{a_{2016}}}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x∈{N}^{*}}\\{y∈{N}^{*}}\end{array}\right.$,則z=x-y的最小值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設x∈R,則x>π的一個必要不充分條件是(  )
A.x>3B.x<3C.x>4D.x<4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在各項均為正數(shù)的等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+…+log3a10=( 。
A.12B.2+log35C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某企業(yè)有甲、乙兩個研發(fā)小組,為了比較他們的研發(fā)水平,若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分,現(xiàn)隨機抽取這兩個小組過去研發(fā)新產(chǎn)品15次的成績?nèi)缦拢?br />
123456789101112131415
111001110101101
101101101001011
(1)試計算甲、乙兩組研發(fā)新產(chǎn)品的成績的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(2)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估算恰有一組研發(fā)成功的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=2sin({ωx+\frac{π}{6}})({ω>0})$的圖象與x軸交點的橫坐標構(gòu)成一個公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)圖象沿x軸向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是( 。
A.在$[{\frac{π}{4},\frac{π}{2}}]$上是增函數(shù)
B.其圖象關(guān)于直線$x=-\frac{π}{4}$對稱
C.函數(shù)g(x)是奇函數(shù)
D.當$x∈[{\frac{π}{6},\frac{2π}{3}}]$時,函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.化簡tan20°+4sin20°的結(jié)果為( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.隨著機動車數(shù)量的迅速增加,停車難已是很多小區(qū)共同面臨的問題.某小區(qū)甲、乙兩車共用一停車位,并且都要在該泊位?8小時,假定它們在一晝夜的時間段中隨機到達,試求兩車中有一車在停泊位時,另一車必須等待的概率.

查看答案和解析>>

同步練習冊答案