A. | -2 | B. | -1 | C. | 0 | D. | 2 |
分析 畫出滿足條件的平面區(qū)域,求出角點的坐標,結(jié)合函數(shù)的圖象求出z的最大值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{4x-y-8=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,
由z=x-y,得:y=x-z,
顯然直線過(2,0)時,z最大,
z的最大值是2,
故選:D.
點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{57}$ | B. | $\sqrt{61}$ | C. | $\sqrt{78}$ | D. | $\sqrt{85}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$) | B. | (-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e) | C. | (0,$\frac{\sqrt{3}}{3}$e) | D. | ($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若α∥β,m⊥n,m⊥α,則n∥β | B. | 若α⊥β,m∥n,m⊥β,則n?α | ||
C. | 若n⊥α,m⊥α,則m∥n | D. | 若α⊥β,n∥α,m⊥β,則m⊥n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | $-\frac{1}{7}$ | C. | -7 | D. | $\frac{1}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com