3.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$,則z=x-y的最大值為( 。
A.-2B.-1C.0D.2

分析 畫出滿足條件的平面區(qū)域,求出角點的坐標,結(jié)合函數(shù)的圖象求出z的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由$\left\{\begin{array}{l}{4x-y-8=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,
由z=x-y,得:y=x-z,
顯然直線過(2,0)時,z最大,
z的最大值是2,
故選:D.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知an=(2n-1)•2n,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列四個結(jié)論,正確的是①③.(填序號)
①a>b,c<d⇒a-c>b-d;
②a>b>0,c<d<0⇒ac>bd;
③a>b>0⇒$\root{3}{a}>\root{3}$;
④a>b>0⇒$\frac{1}{a^2}>\frac{1}{b^2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},則A∩∁UB=(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在半徑為r的圓O上的弓形中,底AB=$\sqrt{2}$r,C為劣弧$\widehat{AB}$上的一點,且CD⊥AB,D為垂足,點C圓O上運動,問點C在什么位置時,△ADC的面積有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=$\sqrt{6}$,若$\overrightarrow{a}$,$\overrightarrow$間的夾角為$\frac{3π}{4}$,則|4$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{57}$B.$\sqrt{61}$C.$\sqrt{78}$D.$\sqrt{85}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設函數(shù)y=ax2與函數(shù)y=|$\frac{lnx+1}{ax}$|的圖象恰有3個不同的交點,則實數(shù)a的取值范圍為( 。
A.($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$)B.(-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e)C.(0,$\frac{\sqrt{3}}{3}$e)D.($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知α、β是兩個不同的平面,m、n是兩條不同的直線,下列命題中正確的是( 。
A.若α∥β,m⊥n,m⊥α,則n∥βB.若α⊥β,m∥n,m⊥β,則n?α
C.若n⊥α,m⊥α,則m∥nD.若α⊥β,n∥α,m⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知角α的頂點為坐標原點,始邊為x軸正半軸,終邊落在第二象限,A(x,y)是其終邊上一點,向量$\overrightarrow{m}$=(3,4),若$\overrightarrow{m}$⊥$\overrightarrow{OA}$,則tan(α+$\frac{π}{4}}$)=( 。
A.7B.$-\frac{1}{7}$C.-7D.$\frac{1}{7}$

查看答案和解析>>

同步練習冊答案