14.某市教育與環(huán)保部門聯(lián)合組織該市中學(xué)參加市中學(xué)生環(huán)保知識團(tuán)體競賽,根據(jù)比賽規(guī)則,某中學(xué)選拔出8名同學(xué)組成參賽隊(duì),其中初中學(xué)部選出的3名同學(xué)有2名女生;高中學(xué)部選出的5名同學(xué)有3名女生,競賽組委會將從這8名同學(xué)中隨機(jī)選出4人參加比賽.
(Ⅰ)設(shè)“選出的4人中恰有2名女生,而且這2名女生來自同一個學(xué)部”為事件A,求事件A的概率P(A);
(Ⅱ)設(shè)X為選出的4人中女生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)利用互斥事件概率加法公式能求出事件A的概率.
(Ⅱ)隨機(jī)變量X的所有可能取值為1,2,3,4.分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列和隨機(jī)變量X的數(shù)學(xué)期望.

解答 解:(Ⅰ)∵中學(xué)選拔出8名同學(xué)組成參賽隊(duì),其中初中學(xué)部選出的3名同學(xué)有2名女生;
高中學(xué)部選出的5名同學(xué)有3名女生,競賽組委會將從這8名同學(xué)中隨機(jī)選出4人參加比賽,
設(shè)“選出的4人中恰有2名女生,而且這2名女生來自同一個學(xué)部”為事件A,
由已知,得$P(A)=\frac{C_2^2C_3^2+C_3^2C_3^2}{C_8^4}=\frac{6}{35}$,
所以事件A的概率為$\frac{6}{35}$.…(5分)
(Ⅱ)隨機(jī)變量X的所有可能取值為1,2,3,4.
由已知得$P({X=k})=\frac{{C_5^kC_3^{4-k}}}{C_8^4}({k=1,2,3,4})$.…(8分)
P(X=1)=$\frac{{C}_{5}^{1}{C}_{3}^{3}}{{C}_{8}^{4}}$=$\frac{1}{14}$,
P(X=2)=$\frac{{C}_{5}^{2}{C}_{3}^{2}}{{C}_{8}^{4}}$=$\frac{3}{7}$,
P(X=3)=$\frac{{C}_{5}^{3}{C}_{3}^{1}}{{C}_{8}^{4}}$=$\frac{3}{7}$,
P(X=4)=$\frac{{C}_{5}^{4}}{{C}_{8}^{4}}$=$\frac{1}{14}$,
所以隨機(jī)變量X的分布列為:

X1234
P$\frac{1}{14}$$\frac{3}{7}$$\frac{3}{7}$$\frac{1}{14}$
…(10分)
隨機(jī)變量X的數(shù)學(xué)期望$E(X)=1×\frac{1}{14}+2×\frac{3}{7}+3×\frac{3}{7}+4×\frac{1}{14}=\frac{5}{2}$.…(12分)

點(diǎn)評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知全集U=R,若A={x|x<0},B={x|x≥2},則CR(A∪B)={x|0≤x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在矩形ABCD中,AB=3,BC=$\sqrt{3}$,$\overrightarrow{BE}=2\overrightarrow{EC}$,點(diǎn)F在邊CD上,若$\overrightarrow{AB}•\overrightarrow{AF}=3$,則$\overrightarrow{AE}•\overrightarrow{BF}$的值為( 。
A.4B.$\frac{8\sqrt{3}}{3}$C.0D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F是拋物線x2=4y的焦點(diǎn),P為拋物線上的動點(diǎn),且A的坐標(biāo)為(0,-1),則$\frac{|PF|}{|PA|}$的最小值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞增,則滿足f(2x-1)<f($\frac{1}{3}$)的x 取值范圍是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角梯形BCEF中,BF∥EC,且EF=$\frac{1}{2}$BF=$\frac{1}{3}$CE,EF⊥EC,A為BF的中點(diǎn),ED=$\frac{1}{3}$EC,現(xiàn)沿直線AD將四邊形ADEF折起,如圖2,使得平面ADEF⊥平面ABCD,M為CE的中點(diǎn).

(1)證明:BM∥平面ADEF;
(2)求平面ADEF與平面BEC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.己知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log2x-1,則f(-$\frac{\sqrt{2}}{2}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}的前n項(xiàng)和Sn=2n,則a4=( 。
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC,角A,B,C所對邊分別為a,b,c,已知c=$\sqrt{5}$,cosC=$\frac{1}{3}$,sinA=$\sqrt{2}$cosB
(1)若函數(shù)f(x)=sin2x-2acos2x(x∈R),求函數(shù)f(x)的最值;
(2)若將f(x)的圖象向右平移$\frac{π}{6}$單位長度,再將其橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,得到g(x)的圖象,求g(x)的表達(dá)式及對稱軸方程.

查看答案和解析>>

同步練習(xí)冊答案