12.函數(shù)f(x)=2x-2+ex-1的零點所在區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 由函數(shù)的解析式求得f(0)f(1)<0,再根據(jù)根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間.

解答 解:∵f(x)=2x-2+ex-1,
∴f(0)=-2+$\frac{1}{e}$<0,f(1)=2-2+1>0,
∴f(0)f(1)<0.
根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間是(0,1),
故選:B.

點評 本題主要考查求函數(shù)的值,函數(shù)零點的判定定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知A1A2、B1B2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的長軸和短軸,若△A1B1B2是等邊三角形,則該橢圓的離心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.二次函數(shù)y=ax2+2ax+1(a<0)在區(qū)間[-1,4]上的最大值為4,則a的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.把112°30′化成弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{3{x}^{2}-x\sqrt{x}+5\sqrt{x}-9}{\sqrt{x}}$;
(2)f(x)=(x-1)(x+1)(x2+1)(x4+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,點($\sqrt{{a}_{n}}$,Sn)在曲線y=2x2-2上.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}的前n項和為Sn,若S11=22,則a3+a7+a8=( 。
A.18B.12C.9D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.記數(shù)列{an}的前n項和為Sn,若Sn+(1+$\frac{2}{n}$)an=4,則an=$\frac{n}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,一根木棒AB長為2米,斜靠在墻壁AC上,∠ABC=60°,若AB滑動至A1B1位置,且$A{A_1}=(\sqrt{3}-\sqrt{2})$米,則①BB1=$\sqrt{2}$-1米;②木棒AB的中點D所經(jīng)過的路程為$\frac{π}{12}$米.

查看答案和解析>>

同步練習(xí)冊答案