雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中,F(xiàn)為右焦點(diǎn),A為左頂點(diǎn),點(diǎn)B(0,b)且
AB
BF
=0,則此雙曲線的離心率為(  )
A、
5
+1
2
B、
2
C、
3
+1
2
D、
3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先利用
AB
BF
=0,推導(dǎo)出∠ABF=90°,再由射影定理得b2=ca,由此能求出該雙曲線的離心率.
解答: 解:∵
AB
BF
=0,∴∠ABF=90°,
由射影定理得OB2=OF×OA,
∴b2=ca,
又∵c2=a2+b2,
∴c2=a2+ca,
∴a2+ca-c2=0,
∴1+e-e2=0,
解得e=
1+
5
2
或e=
1-
5
2
(舍),
故選:A.
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,涉及到雙曲線性質(zhì)、向量、射影定理等知識(shí)點(diǎn),解題時(shí)要注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:曲線方程為y=
1
3
x3+
4
3
求過(guò)點(diǎn)(2,4)且與曲線相切的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列的前10項(xiàng)和,前20項(xiàng)和,前30項(xiàng)的和分別為S,T,R,則( 。
A、S2+T2=S(T+R)
B、T2=SR
C、(S+T)-R=T2
D、S+T=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
+lnx,則有(  )
A、f(2)<f(e)<f(3)
B、f(e)<f(2)<f(3)
C、f(3)<f(e)<f(2)
D、f(e)<f(3)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
2
=1的焦點(diǎn)分別為F1、F2,P為雙曲線上的一點(diǎn),滿足∠F1PF2=60°,則|PF1|+|PF2|的值為( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸在y軸的左側(cè),其中a,b,c∈{-3,-2,-1,0,1,2,3},在這些拋物線中,若隨機(jī)變量ξ=|a-b|的取值,則ξ的數(shù)學(xué)期望E(ξ)=( 。
A、
8
9
B、
3
5
C、
2
5
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在以BC為直徑的半圓上任取一點(diǎn)P,過(guò)弧BP的中點(diǎn)A作AD⊥BC于D.連接BP交AD于點(diǎn)E,交AC于點(diǎn)F,則BE:EF=( 。
A、2:1B、1:1
C、1:2D、以上結(jié)論都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若∠C=90°,則△ABC是直角三角形”它的逆命題是( 。┟}.
A、真B、假C、不確定D、D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成60°角,則正三棱錐外接球面積為( 。
A、4π
B、4
3
π
C、16π
D、16
3
π

查看答案和解析>>

同步練習(xí)冊(cè)答案