17.已知函數(shù)g(x)=a-x2($\frac{1}{e}$≤x≤e)(其中e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的最大值與最小值之和為( 。
A.0B.$\frac{1}{{e}^{2}}$+3C.e2-1D.e2+$\frac{1}{{e}^{2}}$

分析 由已知,得到方程a-x2=-2lnx?-a=2lnx-x2在$\frac{1}{e}$≤x≤e上有解,構(gòu)造函數(shù)f(x)=2lnx-x2,求出它的值域,得到-a的范圍即可得到最值的和.

解答 解:由已知,得到方程a-x2=-2lnx?-a=2lnx-x2在$\frac{1}{e}$≤x≤e上有解.
設(shè)f(x)=2lnx-x2,求導(dǎo)得:f′(x)=$\frac{2}{x}$-2x=$\frac{2(1-x)(1+x)}{x}$,
∵$\frac{1}{e}$≤x≤e,∴f′(x)=0在x=1有唯一的極值點(diǎn),
∵f($\frac{1}{e}$)=-2-$\frac{1}{{e}^{2}}$,f(e)=2-e2,
f(x)極大值=f(1)=-1,且知f(e)<f($\frac{1}{e}$),
故方程-a=2lnx-x2在[$\frac{1}{e}$,e]上有解等價(jià)于2-e2≤-a≤-1.
從而a的取值范圍為[1,e2-2].
即有a的最大值和最小值的和為e2-2+1=e2-1.
故選C.

點(diǎn)評(píng) 本題考查了構(gòu)造函數(shù)法求方程的解及參數(shù)范圍,關(guān)鍵是將已知轉(zhuǎn)化為方程a-x2=-2lnx?-a=2lnx-x2在[$\frac{1}{e}$,e]上有解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.i是虛數(shù)單位,設(shè)復(fù)數(shù)z滿足|z|=1,則|$\frac{{z}^{2}-2z+2}{z-1+i}$|的最大值為( 。
A.$\sqrt{2}$-1B.2-$\sqrt{2}$C.$\sqrt{2}$+1D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知log${\;}_{\frac{1}{2}}$b<-log2a<-2log4c,則( 。
A.b>a>cB.c>b>aC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.袋子中裝有大小相同的6個(gè)小球,分別有2個(gè)紅球、4個(gè)白球,現(xiàn)從中隨機(jī)摸出3個(gè)小球,則至少有2個(gè)白球的概率為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{|2x-6|,x≥0}\\{3x+6,x<0}\end{array}\right.$,若互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是( 。
A.[4,6]B.(4,6)C.[-1,3]D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若函數(shù)f(x)=logax(0<a<1)在區(qū)間[2,8]上的最大值與最小值之差為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+x+1,x≤1}\\{5x-2,x>1}\end{array}}\right.$,若方程f(x)=m有兩個(gè)不相等的實(shí)數(shù)根x1、x2,且x1+x2<-1,則實(shí)數(shù)m的取值范圍為(3,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x),且方程f(x)=2x有兩等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在實(shí)數(shù)m、n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出m、n的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生隨機(jī)數(shù)a,則不等式ln(3a-1)<0成立的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案